Language Workbench Challenge 2016:
the JetBrains Meta Programming System

Eugen Schindler

Canon/Océ Technologies
eugenschindler@gmail.com

Klemens Schindler

Sioux Embedded Systems
klemensschindler@gmail.com

Federico Tomassetti

Independent
federico@tomassetti.me

Ana Maria Sutii
Eindhoven University of Technology

farcasia@gmail.com

Abstract

This paper describes a solution for the SPLASH 2016
Language Workbench Challenge (LWC) workshop, using
the JetBrains Meta Programming System (MPS) language
workbench. As the main focus of the LWC is on implemen-
tation and not on writing a paper, we used the mbeddr doc-
umentation language to describe the solutions to the chal-
lenges posed in the LWC. In this way, the showcasing of
a solution is co-located with its implementation, making it
easier for the reader to try out the solutions and to better
understand them. Therefore we would encourage you to ac-
tually open the solution implementation (see README.md
for setting it up) and try it out.

JetBrains MPS has evolved into a powerful and flexible
tool that can be used to address most of the language engi-
neering challenges in the LWC. The feature-richness, and the
scale of practical applicability of Jetbrains MPS increases
even more when using the mbeddr platform extensions and
other plugins developed by the MPS community.

1. Introduction

In this paper, we discuss how the JetBrains Meta Program-
ming System can be used to address the challenges presented
in the Language Workbench Challenge 2016 (LWC’16).
The JetBrains Meta Programming System (MPS) is a
language workbench based on projectional editing. While
other language workbenches are based on projectional edit-
ing (e.g. the Whole Platform [3], MetaEdit+ [4], Intentional

[Copyright notice will appear here once *preprint’ option is removed.]

Domain Workbench [2]), MPS is arguably one of the most
feature-rich, with a fast growing user base.

By using a powerful and flexible language workbench
such as MPS, language engineers can provide languages and
IDEs for programmers and non-programmers that support a
significant redesign of the processes of an organization. It is
frequently the case that such processes involve various kinds
of users with various backgrounds, experiences, and needs.
Therefore a complete solution could potentially encompass
different aspects of the internal processes, providing differ-
ent views and a variety of tools such as simulators, debug-
gers, code-generators, and more. For example, in MPS we
could create a text-like DSL to be used by developers. The
same code could be projected using a graphical represen-
tation, to support discussion with domain experts. Testers
could use a simulator to verify the correct behavior of the
applications and documentation including graphs and tables
could be generated for other stakeholders.

Considering the comparison of language workbench fea-
tures presented by Erdweg et al. [1] we can see that MPS
is among the most complete language workbenches. A lan-
guage workbench with a comparable level of completeness
is the Whole Platform. With respect to the feature model pre-
sented in [1], the only features missing in MPS are Free-form
editing and Live translation (the second of which is currently
being looked into by the mbeddr team).

1.1 Challenges presented in the LWC’16

While the call for solutions does not require to address all
challenges, we attempted to cover as much as we could
(given our limited time) in order to offer a broad overview
of the capabilities and limitations of MPS.

The first challenge is on Notation. We demonstrate how
MPS supports several notations. Notations are particularly
relevant because they are the most visible aspect of lan-
guages. In many cases, language workbenches are used to

2016/8/13

http://2016.splashcon.org/track/lwc2016
http://2016.splashcon.org/track/lwc2016
https://www.jetbrains.com/mps/
http://mbeddr.com/
https://github.com/mps-lwc-16/mps-lwc-16

create domain specific languages. Each such language is
intended for domain specific developers who already have
their own preferred notations. Such notations are not neces-
sarily textual. By adapting the tooling to the notations that
are used daily by developers, the mental overhead of ex-
pressing their specifications and designs is significantly re-
duced, which increases their productivity and satisfaction in
using the tooling.

The second challenge considers Evolution and Reuse.
These are characteristics which are important for the mainte-
nance of a solution in the long run. Any mature engineering
approach should consider the whole life cycle of the pro-
posed solution. The evolution is particularly important for
languages because they are tools used to represent knowl-
edge, probably the most valuable asset for many companies.
By being able to evolve languages we can preserve the in-
vestment in building models using those languages. Reuse
is another key element because it permits to significantly re-
duce the cost of developing complex solutions. For exam-
ple, several projects based on MPS benefit from reusing lan-
guages provided as part of the mbeddr platform '.

Finally, the third challenge is about Editing. This aspect
is particularly relevant for projectional editors because they
usually require users to part from the traditional textual edit-
ing experience. This transition requires significant training
and it can be a cause of resistance. By improving the edit-
ing experience we can reduce this risk. While the usability
of the MPS editors have been previously deemed positive by
users [9] we believe is still an aspect which needs to be em-
phasized. By addressing this particular challenge we aim to
prove the progresses of MPS in this area and highlight pos-
sible necessary improvements still needed.

1.2 Accessing the examples

The examples for these challenges are located in a repository
on GitHub 2. To explore the examples, please clone the
repository and follow the instructions in the README.md.

Many of the challenge items can be demonstrated using
examples from the mbeddr platform *, so we have used them
whenever appropriate.

We have written models in the mbeddr documentation
language to present the examples. The mbeddr documenta-
tion language is a language that allows writing prose with
sections, figures, embedded program nodes, etc. To open the
documentation model for the examples of the Notation chal-
lenge, for instance, open the Notation model, as shown in
Figure 1. The Notation chapter is divided into sections, each
of which addresses one or more of the challenge items.

'See http://mbeddr.com/platform.html
2 https://github.com/mps-lwc-16/mps-Iwc-16
3See http://mbeddr.com/platform.html

=] =

L WC016Conlig

Figure 1. The documentation model for the Notation chal-
lenge

1.3 Structure of the paper

In the rest of the paper we present our proposed solutions
to the three different challenges (Notation, Evolution and
Reuse, and Editing). For each challenge we start by describ-
ing the assumptions, then we discuss the implementation,
separately for each point, and finally we analyze each chal-
lenge according to the schema suggested in the challenge
paper[1]: Variants, Usability, Impact, Composability, Limi-
tations, Uses and examples, Effort (best-effort), Other com-
ments, Artifact. Finally, we will reflect back on the three
challenges in the conclusions.

2. Addressing the Notation Problem

The notation part of MPS is arguably one of its most power-
ful features. That is so, because almost any notation can be
rendered in an editor, from textual, tabular and graphical to
a mixture of these. Moreover, one can define an arbitrary Ul
component as a cell in the editor (the editor in MPS is made
of cells*).

On the other hand, writing textual notations seamlessly
requires more effort from the language designer because of
the projectional nature of MPS. The classical example of
writing a sum of two numbers in the editor by first writing
the left-hand side number followed by the plus sign and the
right-hand side number requires additional functions to be
implemented in MPS.

2.1 Assumptions

We do not make any assumptions for the examples in the
next sections. Notations and capabilities such as those de-
scribed next can be provided for any MPS languages.

2.2 Implementation

In the next subsections we present the chosen examples and
the implementation for each item of the Notation challenge.

“https://confluence. jetbrains.com/display/MPSD31/Editor

2016/8/13

http://mbeddr.com/platform.html
http://mbeddr.com/platform.html
https://confluence.jetbrains.com/display/MPSD31/Editor

2.2.1 Support mathematical symbols in addition to
textual notation

Figure 2 shows a mathematical calculation expressed in the
mbeddr math language, which is embedded in a function of
the mbeddr C language.

section 1.1 [mathsym] Mathematical Symbols {

The mbeddr tutorial implements a 1 ing mathematical formulae

embed model content as text He ts0fLogs show B

double sumOfProductsOflogs (int32(] arr, int32 size) (

size X
ﬂ log,arr[i]
i-o0

return
2

Figure 2. Mathematical notation for the mbeddr math lan-
guage

This notation is possible in MPS because one can in-
sert any drawing in an editor cell using base language code
(which is a re-implementation of Java). The sum symbol, for
instance, is placed in the editor component of the SumEx-
pression concept, and the sum symbol is drawn on the screen
using a Graphics object in Java. Two screenshots from the
editor component of the SumExpression concept and the im-
plementation of the sum symbol are shown in Figure 3.

<default> editor for concept SumExpression
node cell layout:

L.OOP

lower: [> { name | } = % lower % <]
upper: % upper | %

body: % body %

symbol: SumSymblolSerif
parentheses: (node)->boolean {

Utils.hasFollowingExpression (node.body) 7
}

symbol bSumSy'mbolSerif {
paint: (g, bounds)->»void {...}

update dimension: (dimension)->void {
dimension.width = dimension.height * 0.7766;
}
}

Figure 3. Editor component of the sum expression in the
math language and the implementation of the sum symbol
with some details folded

2.2.2 Support tabular notation in addition to textual

notation

[checked]
exported statemachine FlightAnalyzer initial = beforeFlight {

in event next (Trackpoint* tp) <no binding>
in event reset () <no binding>
out event crashNotification() => raiseAlarm
readable var intlé points = 0
state beforeFlight { ... }
state airborne { ... }
state landing { ... }
state landed |
entry { points += LANDING: }
on reset [] -> beforeFlight
}
state crashed ({
entry { send crashNotification(); }
}
junction NextRound |
[points > 100] -> airborne
[points <= 100] -> beforeFlight

Figure 4. Textual notation for the mbeddr statemachine lan-
guage with some details folded

(checked]
exported statemachine FlightAnalyzer initial = beforeFlight {

Events
reset ()

beforeFlight
airborne [

1>
-> airborne beforeFlight

>speed <= 200 mps &&
orne
{ points += H

landing [tp->speed — 0 mps] -> landed

[tp->5p 0 mps] -> landing [

i 1->
beforeFlight

States

landed [

1 ->

beforeFlight

crashed

NextRound
<3>

Figure 5. Tabular notation for the mbeddr statemachine lan-
guage

Figure 4 shows a textual notation for the mbeddr statema-
chine language, while Figure 5 shows a tabular notation for
the same model expressed in the same statemachine lan-
guage.

There can be multiple projections associated to models
of a language because MPS permits an arbitrary number of
editors to be defined for the same language. For instance,
the tabular notation for the Statemachine concept is defined
in a separate editor component where the columns, rows and
cells of the concept are filled in with the adequate properties,
children and references of the Statemachine concept. An
excerpt from this editor can be seen in Figure 6.

2016/8/13

table editor for concept Statemachine
node cell layout:
-
#| exportedrlag # ?
-
table (
column headers:
group "Events" {
query {

strict statemachine (name] initial = (% initial % -> { name)) {

getHeaders events (node, editorContext)->join(string
insert new header (node, index)->void {...}
on delete: (node, index)->void {...}
}
}

row headers:
group "States" {
query {
getHeaders states (node, editorContext)->join(string
insert new header (node, index)->void {...}
on delete: (node, index)->void {
node<state> state = node.states () .toList.get (index)
state.delete;
}
}
}

: State;

cells:

Figure 6. Excerpt from the table editor for the Statemachine
concept with some details folded

2.2.3 Support diagrammatic notation in addition to
textual notation

EeEEEEE

Figure 7. Diagrammatic notation for the mbeddr statema-
chine language

Figure 7 shows a diagrammatic notation for the mbeddr
statemachine language for the same model from Section
2.2.2. The diagrammatic notation for the Statemachine con-
cept is implemented in the same manner as described in the
previous section, by means of an editor component where the
nodes and the edges of the Statemachine concept are filled
in with the appropriate properties, children and references of
the Statemachine concept.

2.2.4 Support switching between multiple alternative
notations for the same language

As shown in Sections 2.2.2 and 2.2.3, the notation for the
same model written in the mbeddr statemachine language
can be alternated between textual, tabular, and diagram-
matic (the textual notation is the default notation). MPS pro-
vides support for switching between alternative notations by

| Editorcell | node<> | Iterable) {..

| EditorCell | node<> | Iterable) {..

}

}

means of so-called context hints. A context hint is defined
for each new editor provided for a language. All the context
hints defined for a language are added to a list that can be
accessed from the viewer. The context hints defined for the
mbeddr statemachine language are shown in Figure 8.

concept editor context hints statemachineStuff
hints:
ID: table Presentation: state machine as table

ID: graphical Presentation:

Figure 8. Context hints for the mbeddr statemachine lan-
guage

2.2.5 Generic metadata annotations: annotation of
program elements without changing their core
meaning

Annotations are called attributes in JetBrains MPS. For
defining attributes of nodes in MPS, there exists the NodeAt-
tribute concept that can be attached to almost any model
node by default. Thus, when declaring generic metadata an-
notations, one needs to extend the NodeAttribute concept
and define its contents. An example can be seen in Figure 9
where a GenericNote concept is defined. To use the annota-
tion, the language needs to be imported in the solution, and
then, the GenericNote concept can be attached to any model
node. For example, we have attached a generic note to both
a paragraph in the documentation model and a Java method,
as can be seen in Figure 10.

pattribute info
multiple: <inherited>
role: documentedNote

attributed concepts: BaseConcept

NodeAttribute

implements <none>

concept GenericNote extends

instance can be root: false

alias: <ne alias>

short description: <no short description>

properties:
note string
children:
<< o0 2>

references:
<< ... 3>

Figure 9. Structure of the generic note concept

2016/8/13

state machine graphically

Note: Thi

®

Example annotated paragraph

Below the exact same annotation type can be seen in java code:

embed model content as text TestClass show @

public class TestClass {
/*package*/ int a;

Note: Example Note
/*package*/ int doubleNumber (int aNumber) {
return aNumber * aNumber;
}
}

Figure 10. Two example uses of the generic note in the
documentation model from GitHub

The metadata annotations do not change the model ele-
ments to which they are attached at all.

2.2.6 Optional hiding: hide parts of the code, without
losing the content and while retaining editability

The mbeddr environment supports product line variability
[11]. In the variability language, users can define feature
models (see Figure 11) and different configurations of such
features (see Figure 12). In the implementation code that
makes use of the features of a feature model, presence con-
ditions guard code fragments (see Figure 13). A presence
condition is a condition on features from the feature model.
Once a configuration is chosen, the code that is guarded
with presence conditions that do not hold is taken out by
the generator. For more information on the feature models in
mbeddr see Voelter et. al. [8].

feature model FlightProcessor

root ? {
nullify
normalizeSpeed xor {
maxCustom [intl6é/mps/ maxSpeed]
maxl100

}

Figure 11. The feature model for flight processor
configuration model cfgDoNothing configures FlightProcessor
FlightProcessor_root {
1

configuration model cfgNullifyOnly configures FlightProcessor
FlightProcessor_root {

Trackpoint* process_trackpoint (Trackpoint® t) {
{nullify}
t.alt = 0 m;
{max100}
t.speed = 100 mps;

{maxCustom}
A IRl o < Cu s tom . maxSpeedy

return t;

}

Figure 13. Function initializing a trackpoint by making use
of presence conditions for elements from the feature model
in Figure 11

The hiding of parts of the code is handled in the editor
with the help of the show if option. Cells of the editor are
conditioned by the show if option. For instance, once a vari-
ant configuration has been chosen, the editor can be updated
to show the model with the processed presence conditions.
Figure 14 illustrates how the viewing of the presence con-
ditions are conditioned by a mode that is different from the
compact mode. Moreover, the changes to the viewer once the
mode is changed via a menu action can be seen in Figure 15.

<default> editor for concept PresenceCondition
node cell layout:

2[-

2(- B ¢/ condition 3|-]

- 22 :H <1/ (>/attributed node <]
with tooltip
2[- condition: (> querylist editor /empty cell: <default> <) -]

/folded cell: <default> -]

-1
+ g PresenceCondition | & deletePCONPC | € PresenceCondition._Editor | Constraints | ® PresenceCondition_Behavior | Gy check PresenceCondidtion | Actions | Refactoril

spector

tbrains.mps.Jang.editor.structure CellModel_Collection
style:

<no base style> {
<< e >>
}

Common:

cell id <default>
action map <default>
keymap <default>

menu

ttracts focus noAttraction

show if (editorContext, node)->boolean {
!VarEditorModeHelper.modeIsVariant () ;

}

<none>

Figure 14. The editor for concept PrecenceCondition

[EETET Nevigate Code Analyze Build Run Tools Migration VCS Window Help
| compactproductLine #- 1 | B Notation X | © Staticvariability X

*_ Detailed Product Line
™ Seicced Varant Variant Selection: FlightProcessor -> cfgNullifyMaxAt200

<< L>>
 Analyses Results

i q [PLE]
Gode Reviow state
nullify T e e e 0 staticvVariability constraints
} — T model mbeddr.tutorial.main.defaultExtensions imports 0 Datastructures
Presentation Mode package examples 0 UnitDeclarations
t © Flightvariability
.) . . .) annotations (read onl @ SIUnit
configuration model cfgNullifyMaxAt200 configures FlightProcessor R strucure (resd on DI

: expressions
FlightProcessor_root { by

- programannotations

%4 AlternativeOriginal Z 0
55 ConditionalAlternati

%3 ConditionalReplacer

nullify

nt* process_trackpoint (Tra

%3 ConditionalSwitch

onditionalSwitchC, return t;
'3 FeatureAttributeRef
} 51 Easnirac ancivion)

normalizeSpeed {
maxCustom [maxSpeed = 200 mpd

Figure 15. The process_trackpoint function after changing
the editor mode to the selected variant; compare this with
Figure 13

Figure 12. Three configuration models given the feature
model of the flight processor in Figure 11

5 2016/8/13

2.2.7 Computed properties: read only annotations that
are automatically derived form the main
program

The assert statements in mbeddr have an id that is read-only
and that is derived from the main program. The number of
the id depends on the location of the assert statement in the
main program. It is used mainly in logs to easily identify
failed assert statements. An example of assert statements and
their ids is given in Figure 16.

testFlightanal [
Flig er £;

£.init; | Asm init

assert (0) f.isInState(beforeFlight); |Asm test la

assert (1) f.points == 0;] Asm test 1b

£.trigger (next makeTP (0, 20));] Asm_test 2d

assert(2) f.isInState(beforeFlight) && f.points == 0;] Asm test 2b
£.trigger (next|makeTP (100, 100));) Asm test 3a

assert(3) f.isInState(airborne) && f.points == 100;] Asm_test 3b

test statemachine f {
next (makeTP (200, 100)) => airborne
next (makeTP (300, 150)) => airborne
next (makeTP (0, 90)) = landing
next (makeTP (0, 0)) = landed

~sm_test_4a

}
assert-equals (4) f.points == 200; | Asm_test_4b

tention. The intention is defined for RunnableTrigger con-
cepts and it calls method synchronizeRunnableParent from
concept RunnableTrigger. The OperationTrigger is a sub-
concept of RunnableTrigger and it overrides method syn-
chronizeRunnableParent. The implementation of the method
is straightforward again, simply renaming the method name
and adding the right arguments.

intention synchronizeRunnableWithTrigger for concept RunnableTrigger {
error intention : false

available in child nodes : false

description(node, editorContext)->string {
"Synchronize";

}
<isApplicable = true>
execute (node, editorContext)->void {

node.synchronizeParentRunnable () ;

}

Figure 16. Assert statements and their computed ids

2.2.8 Computed structures: structured, editable views

The signatures of mbeddr component operations are an ex-
ample of computed structures. Figure 17 depicts component
B, which provides a port a that refers to interface A. In this
component, we create a runnable (component method) with
an initial dummy name, aFloat. We want this runnable to be
triggered by operation a.f from the port a. When you exe-
cute the Synchronize intention on aFloat, it will get the same
arguments as a.f automatically and its name will be updated
consistently to portName_methodName.

Intentions
exported cs interface A {

i Toggle Suppress Warnings >
fleat £(int32 a, float b, boolean c) -

} 5 Comment Out

exported couponent B extends nothing (

provides A a

float aFloat() <= {

}

} 7 Add Generic Unit Declaration >

5 Add Decumentation to aFloat [Runnable] »
Add Margin Comment L
¥ Attach Name

exported cs interface A {
float f(int32 a, float b,
}

boolean c)

exported component B extends nothing {
provides A a
float a_f(int32 a, float b, boolean c) <= op a.f {

}

Figure 17. The synchronize intention automatically updates
the runnable name and arguments.

The implementation of the synchronize intention is straight-
forward. Figure 18 depicts the implementation of the in-

Figure 18. The implementation of the synchronize inten-
tion.

2.2.9 Skeleton editing: guide the user with syntactic
templates with editable holes

The mbeddr build language is an example of a bigger struc-
ture with skeletons that can be edited. The user makes a build
configuration and some course-grained choices for the build
(gcc, microcontroller, custom, etc.), and then she has a skele-
ton in which the details can be filled in. An example of a
build configuration is shown in Figure 19.

Platform

GNU paths are not checked
make: make

gdb: gdb

compiler
path to executable: gcc
compiler options: -std=c9%
linker options: <no link options>

debug opticons: fgi

Configuration Items

reporting | printf

components | generation strategy: no middleware {

wire statically: false

check contracts (runtime & static): true

}

state machines | trigger as const true
generate test code false
variability mappings | fm FlightProcessor -> cfgNullifyMaxAt200
variability @ runtime
tracing
units
math
unittest | test isolation

Binaries

executable MbeddrTutorialDefaultExt is test E {
modules:
Main

FunctionPointers (ex

Figure 19. A build configuration example.

2016/8/13

Obtaining such a skeleton is possible through the editor
aspect of a language. In this particular case, in the editor
for the build configuration language (see Figure 20), there
are three sections specified: the platform, the configuration
items and the binaries. The headers of these sections are
constant cells in the editor, and their constituent elements
can be filled in by the user once the build configuration is
instantiated.

[/
iconAndNameCell
5 custom cell &
? | NEVER GENERATE THIS MODEL
<constant>
Platform
5 custom cell S
% target %
<constant>
Configuration Items
S custom cell $
(/ % configurationItems % /)
/empty cell: <constant>
<constant>
Binaries
5 custom cell S
(- % binaries % /empty cell: <constant> -)

/1]

Figure 20. The editor for build configurations.

2.2.10 Embedding code in prose: mix structured code
with free text

One of the most relevant examples of code embedding in
prose is the documentation language in mbeddr. An exam-
ple can be seen in Figure 21. The figure shows an excerpt
from the file that was used to document and implement the
language workbench challenge’s requirements of this year.

se] Embedding Code in Prose {

void SelectingAndModifyingCode (int8[] data, int8 datalLen)
{

int8 alocalvVariable = 10;

Figure 21. Mixing prose and code.

The documentation language has as a top-level concept,
the Document concept. The document is formed of chap-
ters. In turn, a chapter is formed of sections and sections
are formed of paragraphs. There are multiple types of para-
graphs allowed in the documentation language. One of them
is ModelContentAsTextParagraph. This type of paragraph
extends AbstractModelContentParagraph, which contains
model code pointers. Furthermore, a model code pointer
contains a collection of elements that can reference any
named concepts in MPS (a named element implements in-
terface INamedConcept). The referenced nodes are then em-
bedded in the editor component. Thus, ModelContentAs-
TextParagraph can embed any piece of code that has a name
property. That allows us to embed an ImplementationMod-
ule, for instance, as can be seen in Figure 21.

Moreover, the text itself can contain actual references to
concepts that are defined in mbeddr files. This is achieved
with the help of the mps-multiline language, the mps-richtext
language and the /Word interface [6]. If one has a concept
that needs to be referenced from text (from comments or
in the documentation language, for instance), then that con-
cept needs to implement the /Word interface that simply pre-
supposes to provide a string representation for the concept.
An example can be seen in Figure 21, where the arguments
of function SelectingAndModifyingCode, data and dataLen,
are referenced from the comment attached to the function.

Thus, in mbeddr, one can embed both code in prose and
prose in code, giving rise to a mix of the two.

2.2.11 Embedding blackboxes: allow program
elements to be opaque non-textual elements

We highlight the feature on embedding blackboxes in MPS
with the embedding of images in the documentation lan-
guage. An example of an image introduced in a document
in mbeddr is shown in Figure 22.

image exampleImage show B

ider-sky-flying-40039/

Figure 22. Embedding of an image into an mbeddr docu-
mentation file.

As discussed in the previous section, the Document con-
cept is ultimately formed of paragraphs. In the mbeddr docu-
mentation language, one type of paragraph is the ImagePara-
graph. The editor component of ImageParagraph embeds a

2016/8/13

swing component, and this specifies how to render an image
with a given path. Part of the implementation can be seen
in Figure 23. Now, once a valid image path is specified in
the document, the respective image is rendered in the editor.
The image itself is a blackbox from the point of view of the
document.

<default> editor for concept ImageParagraph
node cell layout:
v

$ custom cell $

$ custom cell §

20/
[~ image { name }
$swing component$

n

show checkbox { showImage } -]

graph | ph_ de_Editor | € ph_Editor | Constraints | ® ImageParagraph_Behavior | Op check ImagePara

ainsmps Jangeditor structure CellModel_iComponent

component provider: (node, editorC

->JComponent {
.isvalidFile()) {
Label ("Invalid Path");

return 1;
} else {

Figure 23. Part of the implementation of a swing compo-
nent in the editor of concept ImageParagraph.

2.3 Variants

There were other alternatives for showcasing some of the
features presented in the previous sections. We will give here
a few variants only.

Switching between notations can be accomplished not
only through context hints, but with different user actions
as well. In the state machine language, one can switch be-
tween different projections by using the Projection tab and
selecting the desired projection. Details on this can be found
in our documentation model on GitHub, in the Notation sec-
tion. In the implementation in mbeddr, there is a plugin that
introduces this tab and that triggers the projection selected.

There are also many other examples for the optional hid-
ing feature. Some characteristics of concepts can be hidden
and toggled with an intention, for instance. Take the ex-
port statement for modules as an example, which can be
tried on modules in the documentation model on GitHub.
The intention toggles the value of the Boolean property ex-
ported, which results in showing/hiding the export statement
depending on the condition expressed in the editor of the
concept (similar to the discussion in Section 2.2.6).

One other variant that can be used as an example to
showcase the power of MPS is the notation in the form of
a PlantUML? diagram of the state machine languages. MPS
allows to incorporate viewers in the editor that project a
model in a language written in MPS.

2.4 Usability

The effort to make the notations as usable as possible goes
to the language designer. The drawbacks of the projectional
editors are well-known, but MPS goes a long way to provide
tools to the language designer that help in creating a user-
friendly editor [10]. The notations provided in mbeddr are a
good example of user-friendly notations.

Shttp://plantuml.com/

2.5 Impact

Introducing notations to a language does not come with a big
negative impact on the language. The notation is expressed
in an editor aspect, that is provided for each concept, and
this aspect does not usually influence the other aspects of
the language. At most, the editor aspect might require the
import of certain libraries, and that has an impact on the
overall language because the import is going to be added
to the dependency list of the language itself.

There are situations when the impact of the notation can
be considerable on the language. If one uses the default
graphical notation provided by MPS (instead of the graph-
ical notation provided in mbeddr), one might need to change
the structure of the language itself. This has a very big im-
pact, because all the other aspects of the language depend on
the structure. The changes are required if the elements that
need to be represented as edges in the graphical representa-
tion are not concepts in the language itself. That would mean
transforming those elements into concepts first.

2.6 Composability

Each concept in a language can have any number of editors
attached to it. The different editors of a concept C' do not
interact among each others, unless one editor of C' reuses
another editor of C' (reuse of editors for the same concept is
possible in MPS). One common pattern is to define an edi-
tor component for an interface concept and reuse that editor
component in the editor of a concept that implements the
interface concept. This can be noticed in the mbeddr code
with concept StateMachine and interface concept IModule-
Content, for instance.

Composability is very well supported at the editor level,
because each editor is made of cells, and cells, in turn, are
formed of other cells. This permits defining the editor of a
concept as a collection of cells, where some cells are the
editors of the children of the concept.

Moreover, a sub-concept inherits the editor (the nota-
tions) of its super-concept. If this is not the desired behavior,
the editors of the sub-concepts can be overridden as well.

2.7 Limitations

The notations introduced can be used only inside MPS. That
applies also to the textual notations, because the files are
persisted as XML on disk, and they are projected as text on
the screen.

Moreover, as already mentioned, there are certain lim-
itations inherent to projectional editors especially when it
comes to textual notations, but this limitations are well miti-
gated by MPS [10].

2.8 Uses and examples

The uses and examples have been covered in the implemen-
tation section. Almost all examples in that section are from
mbeddr, with the exception of the generic metadata annota-
tion, where we created a separate language with the generic

2016/8/13

http://plantuml.com/

note concept. This language and the generic note concept
can be found on the GitHub repository of our submission.

2.9 Effort (best-effort)

Some of the items described in the previous sections are
trivial to address (in the order of a few minutes):

e The skeleton editing is provided by default in JetBrains
MPS and is a natural consequence of how editors are
created in JetBrains MPS.

The switching between notations is a matter of introduc-
ing one context hint; that is, one file and a name for the
context hint.

The optional hiding is a matter of writing one condition
in the editor cell that should be hidden.

Embedding code in prose is trivial if we want to make ref-
erences to elements defined in code, because it requires
implementing one interface and defining one operation.

Computed structures and properties such as the one ex-
emplified imply the implementation of a function that
computes the necessary structures.

Generic metadata annotations are trivial to add to model
elements as well, because they involve only defining a
new concept that extends the node attribute.

Other items require more time (in the order of a few min-
utes to a few hours, depending on the size of the language):

e The tabular notation can be more involved because it
requires that a few functions are provided to fill in the
columns and the rows of the table.

e The same holds for the diagrammatic notation where
code needs to be filled in that specifies what concepts
are going to fulfill the role of edges and nodes and under
what conditions.

e Embedding entire chunks of code in prose requires more
effort than simply referencing an element from code in
text.

More involved items that require considerable time (in the
order of a few hours to a day):

¢ Embedding blackboxes, such as images, requires that one
implements the logic to render the image in the editor and
the logic to read the path of such images.

e Showing math symbols in the editor takes more time as
well, as the rendering of the symbol in the viewer needs
to be implemented.

2.10 Artifact

The examples discussed in this section can all be found in
the documentation model in the Notation section. As for
their implementation, that resides in the mbeddr code (see
file README.md for the version of mbeddr we used).

3. Addressing the Evolution and Reuse
Problem

In this section we present our solution to the challenge on
Evolution and Reuse.

3.1 Assumptions

Our solutions are presented making references to the two
main language families developed for MPS.

First of all we have the BaseLanguage, which is an
implementation of Java built from JetBrains and shipped
with MPS. Several extensions are distributed with MPS,
including extensions to support lambdas, manipulation of
sequences, expressions to access MPS concepts and models,
etc.

Another very popular family of languages is mbeddr. It
is an implementation of the C language in MPS with sup-
port for variability, state machines, testing, documentation
and more. In addition to that, the mbeddr platform has been
created. It is a collection of language extensions not specifi-
cally related to mbeddr or the C language. These extensions
proved to be useful in different contexts.

3.2 Implementation

In this subsection we present how we implemented a solu-
tion to each specific challenge.

3.2.1 Language extension: modularly extend a
language with new syntactic constructs

In this section, we are going to describe the mbeddr language
for state machines with event-driven execution. The mbeddr
state machines extends the base language from MPS. This
enables a seamless integration between C code and state
machine specifications.

State machines are a mathematical model of computation
often used in embedded software for describing discrete be-
havior through state transitions. Its characterizing ingredi-
ents are states, transitions and events. At any given time, a
state machine is in a state and it can be transitioned from one
state to another. A transition in a state machine is triggered
by an event. These events are usually provided by the envi-
ronment, and, hence, the state machine needs to have a way
to interact with the environment. Besides events, transitions
can also have different guard expressions that need to hold
when the event arrives, for the transitions to be triggered.

We are now going to describe the extension of mbeddr
with new syntactic notations for state machines.

In mbeddr, the state machine language is packaged in a
language module and it extends the base language of MPS.
The StateMachine concept extends BaseConcept, which
means that the state machine is a program node, as BaseCon-
cept is the concept from which all other concepts are derived.
The state machine language also implements the IModule-
Content interface, which means that they can be top-level
components in modules or can be inside of any container

2016/8/13

that expects IModuleContent children. Modules in mbeddr
C introduce basic program modularization, visibility control
and namespaces [8].

In the next paragraphs, we are going to present excerpts
from a state machine for judging flights. The state machine
awards points for successful takeoff and landing and for
speed flown [7].

The state machine adds custom notation for specifying
the state machine. The textual form of the state machine can
be seen in Figure 24. The figure depicts a hierarchical state
machine that computes the points for a flight. In addition,
because textual forms can live alongside graphical and tabu-
lar forms in MPS, the state machine can be viewed in table
form and graphical form as well alongside the piece of C
code where it is used. Figure 25 shows the same state ma-
chine for flight analyzes in tabular form.

exported statemachine HierarchicalFlightAnalyzer initial = beforeFlight {
macro stopped(next) = tp.speed == 0 mps
macro onTheGround(next) = tp.alt == 0 m
in event next (Trackpoint* tp) <no binding>
in event reset() <no binding>
out event crashNotification() => raiseBAlarm
readable var intlé points = 0
state beforeFlight {
entry { points = 0; }
on next [tp.alt > 0 m] -> airborne
exit { points += TAKEOFF; }
}
composite state airborne initial = flying {
] -> beforeFlight { points = 0; }
on next [onTheGround && stopped] -> crashed
state flying {
on next [onTheGround && tp.speed > 0 mps] -> landing
[tp.speed > 200 mps] -> flying { points += VERY HIGH SPEED:
[tp.speed > 100 mps] -> flying { points += HIGH_SPEED; }

on reset [

on next
on next
i
state landing {
[stopped] -> landed
[1 -> landing { points--; }

on next
on next
}
state landed {
entry { points += LANDING; }
)
}
state crashed ({
entry { send crashNotification(): }
}
}

erated by filling out SQL templates with variable elements.
The results of these queries are then possibly processed us-
ing GPL code.

In our example we implemented both embedding of C
code into our MiniSQL and embedding of MiniSQL into C.
By embedding C code in MiniSQL we can define SQL state-
ments with variable elements. For example we can refer to
a C variable containing an ID in our SQL statement. In this
way we can vary the value of the variable to obtain paramet-
ric SQL queries. We can then execute those queries using li-
braries such as those based on ODBC?. It is important to no-
tice that the MiniSQL embedded in C can still be edited with
proper support regarding validation and auto-completion. It
is not “‘just a string”. This technique is illustrated in 26.

void* getAuthorById(intl6 1d) {
string s = SELECT *
FROM suthors
WHERE author_id = c”1d”
return runQuery(s);

¥

Figure 26. Embedding SQL code into C code and vice versa

To demonstrate the flexibility of this approach we have
also embedded our MiniSQL into the BaseLanguage, which
,1s basically an implementation of Java in MPS. You can
see it in 27. Two separate extensions permit to embed the
same language into different hosts (C and Java). For further
explanations on this approach refer to [5].

public Object authorById(int i1d) {
query(SELECT *
FROM Authors

WHERE author_id = j71d”

Figure 24. Hierarchical flight analyzer state machine - tex-
tual notation

Moreover, the state machine itself embeds arbitrary code
in the actions and in the guards. The actions are statement
lists and the guards are expressions. For instance, look at
the guards and actions in Figure 24; they contain mbeddr C
expressions.

3.2.2 Language embedding: embed a separate
language inside another

We have implemented a simple toy language representing
a subset of SQL. This language permits to define database
schemas and simple SQL statements referring to such schemas.
Typically SQL is used in combination with General Pur-
pose Languages (GPLs): from the GPLs, queries are gen-

Figure 27. Embedding SQL code into Java code and vice
versa

3.2.3 Extension composition: combine independently
developed extensions

The mbeddr project contains many examples of language
composition. Different extensions have been developed dur-
ing the years, not necessarily from the exact same persons
or in the context of the same project. However all of these
extensions can be combined and used together.

A very interesting example is the Documentation lan-
guage which permits to add references to other portions of
code or to embed specific constructs into the documentation.

6 See
Connectivity

https://en.wikipedia.org/wiki/Open_Database_

2016/8/13

https://en.wikipedia.org/wiki/Open_Database_Connectivity
https://en.wikipedia.org/wiki/Open_Database_Connectivity

exported statemachine HierarchicalFlightAnalyzer initial = beforeFlight {

next (Trackpoint* tp)

Events
reset ()

beforeFlight
composite state airborne initial =
[1 ->» beforeFlight
{ points = 0; }
[onTheGround && stopped] -> crashed

flying {

Stat
ates flying

landing
landed
}

crashed

[tp.alt > 0 m] -> airborne
[onTheGround && stopped] -> crashed [] -> beforeFlight

{ points = 0; }

Figure 25. Hierarchical flight analyzer state machine - tabular notation

In the example in Figure 28 we can see a Documentation
construct containing a table. The tables extensions have been
developed separately, in a completely agnostic way, so that
it could be reused in very different contexts. In this case it
contains expressions from mbeddr language (C). Thus, three
different extensions are combined in one single example.

4.1| Price Depends on Country and Price Group

pricepep /functional: status=accepted, @pricing

The price of the phone call depends on a number of factors. Among them are the scountry and the
#pricegroup .

The actual #actMinPrice 1is computed from the w#baseMminPrice with the following equation; the
#priceFactor is determined by the table below: #(actMinPrice = baseMinPrice * priceFactor / 100)

Countries
Germany Italy Spain GreatBritain
PLATINUM 10 El 7 1
-~ GOLD 11)) 10
SILVER 12 El E E

Figure 28. Combining tables, C expressions and the docu-
mentation language

3.2.4 Beyond grammar restrictions: disallow
constructs in certain scopes, without modeling
this in the (abstract) syntax

MPS offers several mechanisms to limit where a certain
construct can be used. In this respect it is not limited to the
abstract syntax definition, but further logic can be added to
additionally constraint the concepts usable in a given scope.

For example, every AssertStatement is technically an
mbeddr Statement, from the point of the abstract syntax.
Howeyver, an additional rule has been defined to restricted all
constructs marked as IRestrictToTests to be used exclusively
in tests or tests related helper functions. This rule is visible
in Figure 29.

concepts constraints IRestrictToTests {
can be child
(childConcept, node, link, parentNode, operationContext)-s=boolean {
parenthode . ancestor<concept = ITestContext, +>.isNotNull |
parentode . ancestor<concept = IFunctionlikes.@testHslperFunction. isNothull;

Figure 29. Rule which constraints the usage of certain con-
structs to tests

3.2.5 Syntax migration: support migrating programs
when concrete syntax changes

Concrete syntax changes are supported by default with pro-
jectional editing without requiring any migration. Since only
the AST is stored in the model, all concrete syntax elements
purely exist in the editor. Therefore, updating an MPS edi-
tor, immediately changes the presentation (concrete syntax)
without requiring a change in the stored model (AST).

3.2.6 Structure migration: support migrating
programs when abstract syntax changes

Unfortunately, we didn’t have enough time to work out a
brief example inline of this document.

Migrations in structure are handled in MPS by means of
migration scripts. Whenever a metamodel for a language
in the field needs to change, you can write a migration
script to migrate models in order to comply with the updated
metamodel. MPS automatically handles versioning of your
language and detects when a model needs to be migrated.

com.mbeddr.core.unittest contains an example of a non-
trivial migration script. You can explore it by opening Log-
ical View — Modules Pool — languages — com— mbeddr
— core — unittest — migrations and explore the migration
scripts there.

3.3 Variants

The three first points we have seen (3.2.1, 3.2.2, and 3.2.3)
have been solved through simple extension techniques. We
do not see any obvious alternative for such cases. About
combining independently defined extensions (3.2.3) we can
consider all the projects using the mbeddr platform as exam-
ples of this technique.

Regarding the grammar restrictions (3.2.4), we imple-
mented it specifying that certain rules can have as ancestors
only certain nodes. Conversely we could have specified that
certain rules could not contain specific descendants instead.

3.4 Usability

From the point of view of usability 3.2.1, 3.2.2, and 3.2.3
do not pose any issue. We simply used the mechanism of
language extensions to add additional constructs to existing

2016/8/13

language. In one case we had done that for the specific goal
to embed another language, while in the other cases we did
not. In all cases the new constructs can be used exactly as
the existing ones, so the new constructs are as usable as the
previous ones with no different interactions required from
the users.

The grammar restriction presented in 3.2.4 does not pose
any usability issue either. The whole mechanism is transpar-
ent to the user: elements which cannot be used in a certain
context are not offered by the auto-completion mechanism
and there is no immediate way to use them when they are
not supposed to be used.

Migrations are typically performed through wizard di-
alogs. Those migrations are proposed to the user when MPS
is started or the user can trigger them manually.

3.5 Impact

Language composition does not require to change existing
elements.

3.6 Composability

Language composition is well supported in MPS. It is very
natural and it does not require any particular technique.
The only possible issues could be caused by semantic con-
flicts: suppose an expression language defines only statically
evaluable expressions such as literals and basic mathemat-
ical expressions. Furthermore, suppose a first extension is
based on this consideration and adds the possibility to dis-
play the result of such expressions. Now, if a second exten-
sion would introduce non-statically evaluable expressions,
the two extensions would not interact well together. This
problem could be avoided by planning for extensibility in the
original language: for example we could have required each
Expression concept to declare if it was statically evaluable
or not. All the expressions of the original language would
have declared themselves to be statically evaluable, while
the Expressions from the second extension would have not.
The extensions calculating result values could have used the
method to verify that all Expressions for which it wanted to
calculate a value were indeed statically evaluable and trigger
an error when not-statically evaluable expressions were used
in the wrong context. In this way the two extensions would
interact nicely without being aware of each other.

3.7 Limitations

No particular limitations come to mind.

The only limitation we see is with migrations, because
they are not reversible. This is an issue when different mem-
bers of a team want to use different versions of MPS because
each version comes with specific versions of the BaseLan-
guage: when a project is open with a new version, migrations
have to be performed and these migrations make the project
incompatible with previous versions. Effectively this forces
everyone to use the same version of the language workbench.

3.8 Uses and examples

Language extensibility and composition are used extensively
in the two well-known MPS language families: the BaseLan-
guage and mbeddr. The BaseLanguage defines a core lan-
guage and a set of independent extensions, and mbeddr does
the same.

3.9 Artifact

The implementation can be found on a dedicated github
repository’.

4. Addressing the Editing Problem

4.1 Implementation

In the next subsections we present the chosen examples and
the implementation for each item of the Editing challenge.

4.1.1 Editing incomplete programs: support for
syntactically malformed programs

void <no mame>() {
if (seonditionz) (

Figure 30. Anincomplete function with missing name, con-
taining an if statement missing a guard.

It is possible to edit and persist an incomplete model, how-
ever there are some restrictions to this. A node, for example
an if statement, must have a complete skeleton. It is possi-
ble to leave content out such as the guard and body in an if
statement. The result can be considered syntactically incor-
rect since the guard is missing from the if statement. How-
ever, the construction is still structurally sound since it is a
valid tree node, albeit with some gaps to be filled in. Fig-
ure 30 shows an example of a function with omitted name
containing an if statement missing the guard.

vold cannotDeleteOnlyCloszingBracket () {

Figure 31. Since the closing bracket is not part of the
model, but the presentation, the bracket cannot be removed.

Removing arbitrary pieces of “text” from the model is not
possible. For example the closing bracket of an if statement
can not be removed in isolation. The reason for this is that
it is not part of the model contents (AST), but only of the
presentation (concrete syntax).

7 https://github.com/mps-lwc-16/mps-lwc-16

2016/8/13

vold expressionMissingAParenthesis() {
intlé a 5+NL4—4;’3:

Figure 32. An unmatched parenthesis element enables
more text-like editing. Inserting a closing parenthesis re-
structures the AST.

Designing language and editors in MPS can enable a
text-like editing experience. For example, it is possible to
design elements such as an ”Unmatched Parenthesis” into
your language which are not intended for the final model,
but serve as an aid to enable a text-like editing experience.
Figure 32 shows an example of such a scenario.

4.1.2 Structure agnostic copy-paste: copy-paste works
across syntax boundaries

MPS allows selecting, copying, and pasting nodes across any
language boundaries, however selection of nodes must fol-
low the tree structure. For example, it is possible to copy 5
full statements from a selection. It is also possible to copy
a node which contains a component (component language)
containing a state machine (statemachine language) contain-
ing ¢ code (c language) in action implementations. However,
it is not possible to start selection halfway a node and end it
halfway another one.

It is also possible to copy parts of a text-like language into
a text editor. The textual content will be in the text document,
but layout information and whitespace may vary.

4.1.3 Restructuring: changing syntactic structure
without typing the complete expression again.

The example in Figure 32 shows a model with an "Un-
matched Parenthesis”. Inserting a closing parenthesis will
restructure the expression tree according to operator prece-
dence rules and remove the unmatched parenthesis element.

MinEl" - inceomr

intl

"inEl

" —>» Variabl

Figure 33. Inserting a C function in mbeddr restructures the
AST as you type.

Figure 33 shows how a C function goes through various
restructurings as you type.

4.1.4 Language demarcation: show how a combination
of multiple languages in one program are
disambiguated

MPS does not parse text and try to reconstruct a structure.
Instead, every tree node creation binds a type to a node. In
case of ambiguity the user can choose which type to create.
For this reason, no disambiguation is needed for the type of
a node and no special demarcation markers are needed.

Similarly, reference disambiguation is ensured by default
since every node has a unique ID. Although the presentation
of the reference can show a human readable name/identifier,
the reference refers to the node with the given ID. A side
effect of this is that removing an element named "A” and
creating a new element named "A” will count as a new
node and existing references will be broken. If desired, these
references can also be automatically be re-bound to the new
node ID.

T Aemanstrs e

intlé some name () {
return 42:;

statemachine state machine initial = initial {
in event some name () <no binding>
var intlé some name = 0

s=tate initial {

on some name [] -> some _name

state some name {
do {
some_name++;
some_name () ;

Figure 34. A C module, containing a state machine, con-
taining c statements demonstrating language boundaries.
The name some_name is heavily overloaded to demonstrate
disambiguation over language boundaries.

Figure 34 shows how various languages can be nested (c
module, containing a state machine, containing ¢ statements)
and how references are resolved over these language bound-
aries. This example uses the same name (”some_name”) for
a state, an integer, a function, and a statemachine event.
But since reference insertion binds to specific ids, references
over language boundaries are disambiguated by default. The
screenshot does not show this, but ctrl+clicking on the refer-

2016/8/13

ences shows that all references point to the correct declara-
tion.

4.1.5 Delayed decisions: show when the syntactic
category of an expression is determined

At node insertion a defined concept must be inserted. How-
ever, it is possible to restructure the concepts as you type.
Figure 33 shows how the syntactic category changes as you
type, effectively delaying the final decision and providing a
text-like experience.

If a user thinks in terms of the AST instead of linear text,
it is also possible to immediately insert the desired concept
by using code completion or typing the alias of the desired
concept. In text terms this feels similar to using a template
instead of typing sequentially.

4.1.6 End-user defined formatting: show if and how
user can change the visual appearance of the
program

In MPS, end-users can be given some control over the for-
matting. In the visual projection, for instance, end-users can
move the nodes and the edges freely. There are some default
layouts for the visual projection, but these layouts can be
changed by the end-users.

Another example of end-user defined formatting is the
insertion of empty lines in places where a statement is ex-
pected in mbeddr code. That means that the end-user can
insert any number of empty lines in the body of a function,
for instance. Subsequently, the empty line can be substituted
by any sub-concept of Statement. To achieve this behavior
the Statement concept has been declared with an editor that
shows an empty line. Moreover, the StatementList concept
contains an arbitrary number of Statement children, and by
default, in MPS, at the press of an enter in a children collec-
tion (the statements in StatementList), a child concept is cre-
ated (Statement). This results in showing an empty line in the
viewer because the Statement concept is represented by an
empty line. Moreover, by default, in MPS, a concept can be
substituted by any of its sub-concepts, and hence, the State-
ment concept can be replaced by any of its sub-concepts.

Thus, the amount of freedom that the end-user has in
defining its own formatting is decided, to some extent, by
the language designer.

4.1.7 Specification of default formatting: support for
pretty printing

JetBrains MPS has a default formatting for languages. The
default formatting is simply following the structure of the
abstract syntax of the language, printing the names of the in-
stantiated concepts and their values, and also visually show-
ing the parent-children relationship among concepts. An ex-
ample of an expression with a defined formatting and a de-
fault formatting is shown in Figure 36.

void some_function() {
intl6 a;
intl6 b;

multi expression {
left :
2

right :
3

Figure 35. Defined and default formatting for a binary ex-
pression

A multitude of projections (formatting) can be defined for
a given language and its concepts. A projection is defined in
an editor component, where editor cells specify the location
and other attributes of the concepts in the viewer. For in-
stance, the editor component of the binary expression says
that the left expression (with conditional parentheses around
it) is followed by a constant (the symbol for the expression)
and the right expression (again, with a conditional parenthe-
ses around it).

projection: [~ 2 (FES$|left % 2)) grammar.constant ? (FES right %

Figure 36. Defined editor for binary expression

Switching among projections does not modify the model
itself, but only the representation of the model on the screen.

4.1.8 Formatting preservation: how is formatting
preserved when the code is automatically
restructured

An example of a common refactoring is the introduction of a
local variable in C functions [7]. The refactoring is triggered
by selecting an expression in the body of a function, and
pressing CTRL-Alt-V. As a result of this action, a window is
prompted where the user introduces the name of the variable.
The refactoring extracts the expression, places it in a local
variable declaration and replaces all its occurrences in the
body of the function with a reference to the variable. The
process can be seen in Figure 37.

2016/8/13

2)

-1

boolean isAtLimit(int8 v, int8 lim) {

int8 val = measure (FSREBV-(S8{eia) ;

val = calibrate(val, v * FACTCR):

return val >= lim;

& variable Name

Variable Name

product]

J

boolean isAtLimit (int8 v, intB8 lim) {

int8 product = v * FACTOR;
int8 val = measure (product):
val = calibrate(val, product):

return val >= lim;

Figure 37. Refactoring for introduction of a local variable

The refactoring for introducing a local variable is applica-
ble to expression concepts that have a statement as an ances-
tor (see Figure 38). The body of the refactoring is straightfor-
ward: a new local variable declaration is introduced before
the statement where the expression was selected and all the
occurrences of the expression are looked up and replaced.
Changing an expression with a variable declaration does not
change the formatting because the change implies replacing
anode in the tree with another, and the editor component will
render the new node at the specific cell, without affecting
other cells. The most intrusive operation is the introduction
of the new local variable declaration in the existing state-
ments, but this is the purpose of the refactoring itself.
refactoring introducelocalVariable (Introduce Local Variable) overrides <nothing>
target: node<Expression>

allow multiple: false
isApplicableToNode (node)->boolean |

node.ancestor<concept = Statement>.isNotNull;

}

Figure 38. Implementation header of refactoring for intro-
duction of a local variable

Other types of code restructuring are migration scripts
in mbeddr. The situation is similar to the refactorings, the
formatting of the existing code being unchanged (unless the
migration itself changes the formatting).

5. Conclusions

The JetBrains Meta Programming System has significantly
evolved during the years. Nowadays it is a powerful and flex-
ible tool that can be used to address most of the Language
Engineering challenges that have been brought forward in
the LWC 2016.

6. Acknowledgments

Our thanks go out to Markus Vélter and Kolja Dummann
from the mbeddr team for providing us with good examples

from the mbeddr project. Without these, it would have taken
us a lot more work to find nice examples in mbeddr or to
construct such examples ourselves.

Moreover, we would like to thank Markus Volter for
reviewing the paper and providing us with many helpful
hints on how to improve it.

Finally, we would like to thank Remi Bosman from Sioux
Embedded Systems for his contribution to the initial design
proposal of this solution.

References

[1] S. Erdweg, T. van der Storm, M. Volter, L. Tratt, R. Bosman,
W.R. Cook, A. Gerritsen, A. Hulshout, S. Kelly, A. Loh, et al.
Evaluating and comparing language workbenches: Existing
results and benchmarks for the future. Computer Languages,
Systems & Structures, 44:24-47, 2015.

[2] C. Simonyi, M. Christerson, and S. Clifford. Intentional
software. SIGPLAN Not., 41(10):451-464, Oct. 2006. ISSN
0362-1340. doi: 10.1145/1167515.1167511. URL http:
//doi.acm.org/10.1145/1167515.1167511.

[3] R. Solmi. Whole platform, 2005.

[4] J.-P. Tolvanen. Metaedit+: Integrated modeling and metamod-
eling environment for domain-specific languages. In Compan-
ion to the 21st ACM SIGPLAN Symposium on Object-oriented
Programming Systems, Languages, and Applications, OOP-
SLA ’06, pages 690-691, New York, NY, USA, 2006. ACM.
ISBN 1-59593-491-X. doi: 10.1145/1176617.1176676. URL
http://doi.acm.org/10.1145/1176617.1176676.

[5] E. Tomassetti, A. Vetro, M. Torchiano, M. Voelter, and
B. Kolb. A model-based approach to language integration.
In Proceedings of the 5th International Workshop on Mod-
eling in Software Engineering, MiSE ’13, pages 76-81, Pis-
cataway, NJ, USA, 2013. IEEE Press. ISBN 978-1-4673-
6447-8. URL http://dl.acm.org/citation.cfm?id=
2662737 .2662755.

[6] M. Voelter. Integrating prose as first-class citizens with mod-
els and code. In MPM @ MoDELS, pages 17-26, 2013.

[7] M. Voelter. Generic tools, specific languages. TU Delft, Delft
University of Technology, 2014.

[8] M. Voelter, D. Ratiu, B. Kolb, and B. Schaetz. mbeddr:
Instantiating a language workbench in the embedded software
domain. Automated Software Engineering, 20(3):339-390,
2013.

[9] M. Voelter, J. Siegmund, T. Berger, and B. Kolb. Towards
User-Friendly Projectional Editors, pages 41-61. Springer In-
ternational Publishing, Cham, 2014. ISBN 978-3-319-11245-
9. doi: 10.1007/978-3-319-11245-9.3. URL http://dx.
doi.org/10.1007/978-3-319-11245-9_3.

[10] M. Voelter, J. Siegmund, T. Berger, and B. Kolb. Towards
user-friendly projectional editors. In International Conference
on Software Language Engineering, pages 41-61. Springer,
2014.

[11] M. Voelter, A. v. Deursen, B. Kolb, and S. Eberle. Using
C language extensions for developing embedded software: a
case study, volume 50. ACM, 2015.

2016/8/13

http://doi.acm.org/10.1145/1167515.1167511
http://doi.acm.org/10.1145/1167515.1167511
http://doi.acm.org/10.1145/1176617.1176676
http://dl.acm.org/citation.cfm?id=2662737.2662755
http://dl.acm.org/citation.cfm?id=2662737.2662755
http://dx.doi.org/10.1007/978-3-319-11245-9_3
http://dx.doi.org/10.1007/978-3-319-11245-9_3

	Introduction
	Challenges presented in the LWC'16
	Accessing the examples
	Structure of the paper

	Addressing the Notation Problem
	Assumptions
	Implementation
	Support mathematical symbols in addition to textual notation
	Support tabular notation in addition to textual notation
	Support diagrammatic notation in addition to textual notation
	Support switching between multiple alternative notations for the same language
	Generic metadata annotations: annotation of program elements without changing their core meaning
	Optional hiding: hide parts of the code, without losing the content and while retaining editability
	Computed properties: read only annotations that are automatically derived form the main program
	Computed structures: structured, editable views
	Skeleton editing: guide the user with syntactic templates with editable holes
	Embedding code in prose: mix structured code with free text
	Embedding blackboxes: allow program elements to be opaque non-textual elements

	Variants
	Usability
	Impact
	Composability
	Limitations
	Uses and examples
	Effort (best-effort)
	Artifact

	Addressing the Evolution and Reuse Problem
	Assumptions
	Implementation
	Language extension: modularly extend a language with new syntactic constructs
	Language embedding: embed a separate language inside another
	Extension composition: combine independently developed extensions
	Beyond grammar restrictions: disallow constructs in certain scopes, without modeling this in the (abstract) syntax
	Syntax migration: support migrating programs when concrete syntax changes
	Structure migration: support migrating programs when abstract syntax changes

	Variants
	Usability
	Impact
	Composability
	Limitations
	Uses and examples
	Artifact

	Addressing the Editing Problem
	Implementation
	Editing incomplete programs: support for syntactically malformed programs
	Structure agnostic copy-paste: copy-paste works across syntax boundaries
	Restructuring: changing syntactic structure without typing the complete expression again.
	Language demarcation: show how a combination of multiple languages in one program are disambiguated
	Delayed decisions: show when the syntactic category of an expression is determined
	End-user defined formatting: show if and how user can change the visual appearance of the program
	Specification of default formatting: support for pretty printing
	Formatting preservation: how is formatting preserved when the code is automatically restructured

	Conclusions
	Acknowledgments

