
POLITECNICO DI TORINO

SCUOLA DI DOTTORATO

Dottorato in Ingegneria informatica e dei sistemi – XXVI ciclo

Tesi di Dottorato

Polyglot software development
Benefits, problems and guidelines for the adoption and combination

of domain specific formal languages

Federico Cesare Argentino Tomassetti

Tutore Coordinatore del corso di dottorato
prof. Marco Torchiano prof. Pietro Laface

December 2013

This work is licensed under a Creative Commons Attribution-NonCommercial-
ShareAlike 3.0 Unported License.

iii

Summary

The languages we choose to design solutions influence the way we think about the
problem, the words we use in discussing it with colleagues, the processes we adopt
in developing the software which should solve that problem.

Therefore we should strive to use the best language possible for depicting each
facet of the system. To do that we have to solve two challenges: i) first of all to
understand merits and issues brought by the languages we could adopt and their
long reaching effects on the organizations, ii) combine them wisely, trying to reduce
the overhead due to their assembling.

In the first part of this dissertation we study the adoption of modeling and
domain specific languages. On the basis of an industrial survey we individuate
a list of benefits attainable through these languages, how frequently they can be
reached and which techniques permit to improve the chances to obtain a particular
benefit. In the same way we study also the common problems which either prevent
or hinder the adoption of these languages. We then analyze the processes through
which these languages are employed, studying the relative frequency of the usage
of the different techniques and the factors influencing it. Finally we present two
case-studies performed in a small and in a very large company, with the intent of
presenting the peculiarities of the adoption in different contexts.

As consequence of adopting specialized languages, many of them have to be
employed to represent the complete solution. Therefore in the second part of the
thesis we focus on the integration of these languages. Being this topic really new
we performed preliminary studies to first understand the phenomenon, studying
the different ways through which languages interact and their effects on defectivity.
Later we present some prototypal solutions for i) the automatic spotting of cross-
language relations, ii) the design of language integration tool support in language
workbenches through the exploitation of common meta-metamodeling.

This thesis wants to offer a contribution towards the productive adoption of mul-
tiple, specific languages in the same software development project, hence polyglot
software development. From this approach we should be able to reduce the com-
plexity due to misrepresentation of solutions, offer a better facilities to think about
problems and, finally to be able to solve more difficult problems with our limited

iv

brain resources.
Our results consists in a better understanding of MDD and DSLs adoption in

companies. From that we can derive guidelines for practitioners, lesson learned for
deploying in companies, depending on the size of the company, and implications for
other actors involved in the process: company management and universities.

Regarding cross-language relations our contribution is an initial definition of
the problem, supported by some empirical evidence to sustain its importance. The
solutions we propose are not yet mature but we believe that from them future work
can stem.

v

Acknowledgements

Dear hyphotethical reader, I am sure you will understand my reasons to write most
of this part of the thesis in my native language, considering it is mainly addressed
to other Italian speakers. However, in accordance to the title, a few other languages
are used in these pages.

Ho imparato quanto sia vero che gli esami non finiscono mai. Non mi illudo
di poterli considerare quindi del tutto terminati, cionondimeno con questa tesi e,
sperabilmente, con un esito positivo degli esami di dottorato, raggiungo un traguardo
che merita una piccola celebrazione. Per quanto questo percorso sia stato lungo e
irto di ostacoli lo sarebbe stato ancora di più (molto, anzi infinitamente di più) senza
il supporto, in forme diverse e complementari, di una miriade di soggetti.

Vorrei prima di tutto ringraziare il mio relatore, il prof. Marco Torchiano
per avermi guidato in questo percorso diversi anni orsono, iniziato con la tesi di
laurea specialistica. Ero allora ben determinato a non intraprendere questa strada,
tuttalpiù a spendere una manciata di mesi in dipartimento e poi...

Ed eccomi qua, immune a ogni forma di coerenza.
Sebbene certi momenti sia stato leggermente meno che entusiasta di aver fatto

questa scelta, a posteriori sono felice di averci ripensato e gli sono quindi grato di
avermi proposto questa apparentemente malsana idea.

Un grazie lo devo anche al prof. Maurizio Morisio, con cui avevo svolto la
tesina di laurea triennale (sebbene lui non se ne ricordi). Ammiro molto la sua
capacità di cogliere in un attimo il nocciolo del problema. Al contempo sono un po’
spaventato dalla sua innata abilità nello scovare la magagna che credi di aver ben
nascosta.

Ora, se Newton ha dichiarato di aver potuto vedere più in là solamente perché
abbarbicato sulle spalle di giganti, io, per ogni contributo anche minimo che possa
aver offerto alla ricerca in questi anni, ho dovuto appoggiarmi a una stirpe di titani
di proporzioni biblico-apocalittiche.

Fra questi mi fa piacere ricordare Antonio Vetrò, un uomo perennamente in
lotta con le codifiche di carattere e le citazioni che non gli vengono riconosciute. Con
lui ho orgogliosamente costituito la trasposizione nel mondo della ricerca di grandi

vi

coppie che hanno segnato l’immaginario collettivo. Ricordateci cos̀ı, come i Gianni
e Pinotto della ricerca italiana.

Appena ho potuto ho cercato scuse per lavorare con Giuseppe Rizzo perché
è molto, molto bravo. Lavorare con lui è stato sempre stimolante. Non ho capito
tutto quello che ha provato a insegnarmi, in compenso ho annuito moltissimo.

Con Luca Ardito ho condiviso lo stesso percorso e si è cazzeggiato il giusto.
Bene cos̀ı.

Ho incrociato tante altre anime più o meno pie in questi laboratori dei piani
bassi. Li ricordo tutti con affetto: dai compagni di gruppo (Oscar, Cristhian, Al̀ı
e Najeeb) ai compagni di laboratorio (Andrea Martina, mio fiero compagno di
scrivania per anni, Matteo e Sham).

Ringrazio Sara per i molte caffè, pranzi, sedute di psicoterapia fra dottorandi.

Ci sono stati altri ricercatori più esperti da cui ho potuto imparare molto (o
almeno, loro me ne hanno offerto la possibilità). Fra questi Filippo Ricca, che
ha anche scritto per me una lettera di raccomandazione che ha contribuito a farmi
ottenere la borsa DAAD grazie alla quale ho speso un periodo in Germania. Del
gruppo di Genova ringrazio anche Alessandro Tiso, Gianna Reggio e Maurizio
Leotta.

In Germany I had the possibility to work with Daniel Ratiu and Bernhard
Schätz.

Daniel gave me a lot of practical advices (Put a figure in the first page!) and
shared with me its wisdom. So I learnt to ı̂ngrăs,a porcul ı̂nainte de Crăciun.

There I also met one of my idol: Markus Völter. To have the possibility to
discuss with him, Bernd Kolb and Domenik Pavletic were very good reasons to
bear a winter in München.

Credo che senza il contributo di chi lavora sul campo, e produce software vera-
mente, molte idee non sarebbero mai nate e avrei spesso imboccato sentieri (ancora
più) improbabili. Fortunatamente abbiamo avuto la possibilità di scrivere alcuni la-
vori con Trim, di cui ringrazio Lorenzo Bazzani e Felice Di Luca, e CSI Piemonte,
di cui ringrazio Mauro Antonaci e Paolo Arvati.

There is a full list of people who gave opinions, took part in experiments, surveys,
interviews. There were students who shared ideas with me, who worked on bachelor
and master thesis in directions helpful for my research. I could keep listing names
for pages, let me instead sum up in a big

THANK YOU, GRAZIE, DANKE, GRACIAS

E i compagni di corso di dottorato, e i professori. Per voi ci sono parole che
risuonano, con voce stonata, da qualche tempo:

vii

Vivat academia!
Vivant professores!

Vivat membrum quodlibet;
Vivant membra quaelibet;

Semper sint in flore.

E poi c’è il resto, l’esistenza, la Vita, il tutto. In ordine rigorosamente sparso.

Luca Barbato, che conosco dal principio, mi ha dato diverse buone idee, molta
cioccolata e supporto attraverso quest’avventura.

C’è la tesi di Luca Gilli che è stato un esempio. Da leggere, sfogliare e capirne
l’introduzione. Poi, quando il gioco si fa serio e la matematica sovrabbondante, mi
ritiro in buon ordine.

There is Shalini. By looking her near to my old friend I feel all of a sudden the
distance more bearable. Keep him in good hands. Chala Bagundi!

La Goliardia, perché rinverdisce l’amore per l’Università e quello che rappre-
senta. Al di là delle momentanee difficoltà o errori (ad augusta per angusta). Perché
entrambe siete eterne.

I nostri vecchi chi hanno insegnato a dividere il pane ed il sale e ci hanno dato le gambe

per incamminarci. E il cuore. Oggi ci mandano il vaglia delle loro trepidazioni.

Bobo Rossi, Un Goliardo

Vorrei ringraziare i nonni di cui porto il nome e a cui ripenso nei momenti di
difficoltà. Non ho avuto l’onore di conoscerli, però il loro esempio risuona nelle
persone che gli sono state accanto, nei gesti e in ciò che è rimasto dopo di loro.
Perciò sono grato a mio nonno Argentino che ha trovato la forza per venire a
Torino, mantenersi durante gli studi e laurearsi in questo ateneo nel 1929. Un grazie
a mio nonno Cesare, che non potè laurearsi ma fu capace di diventare impresario
e progettare edifici e strade, in Italia e all’estero. Le foto, i racconti e il tuo tavolo
mi sono stati di monito fin dall’infanzia.

A mia madre per il supporto economico durante gli studi.

A mia zia Antonietta che mi ha sempre incoraggiato e che mi chiama Ingegnere
da tempo immemore. Senza il suo supporto in termini d’affetto e pratico tutto
sarebbe stato più difficile.

Mia zia Giuliana e mio zio Giorgio mi hanno spronato anch’essi. Quando andai
a lavorare dopo aver conseguito la laurea triennale fui minacciato di essere preso a
calci nel sedere. Non rinsavii subito ma col tempo ragionai su quelle parole e sono
tornato al Poli. Un po’ più a lungo del previsto.

A mia zia Elisabetta devo molto, mi spiace di non aver saputo ricambiarla
dell’affetto e della sua generosità.

viii

A special thank you goes to marvellous, astonishing people I met during the
periods I spent abroad. You made my life a lot more interesting.

Obrigado Diogo, você foi o melhor amigo de Erasmus que eu jamais poderia ter.

Ti, Mojca, Domen in Slovenija imate mesto v mojem srcu. Tudi brez jezera.

Flavia, când sunt trist ı̂mi amintesc de modul tău de a zâmbi s, i redevin fericit.
As,tept să ne revedem, cine s,tie cand s

¯
i unde.

Victor, because, man, it was a lot of fun!

Daniel, muito grato por todo o Porto. Tudo de bom para o seu PhD!

Marcé, le risate che ci hai fatto fare e la tua carica mi fanno venir voglia di
essere migliore di quello che sono.

Giovanna, per i bei momenti in Veneto, Germania e Spagna. Al prossimo Spritz!

Giulia S., aver vissuto vicino a te a Monaco mi ha fatto sentire bene. Mi
manca avere una vicina bella, simpatica e solare come te. Lo sai che devi venirmi a
trovare, vero?

Claudio e Daniele, pezzi di cuore espatriati in Germania. Claudio, ricordati
che dovunque tu vada corri sempre il rischio di ritrovarti con una Z sulla fronte e
dover fornire spiegazioni alle autorità competenti. E in tedesco, la vedo dura. Anche
se quella volta a St. Louis...

Andrea e Giulia N., i coinquilini che hanno alliettato l’ultimo anno. O che mi
hanno dato un sacco di buone e di pessime idee negli ultimi quindic’anni.

Camille, perchè a volte i francesi non sono persone orribili. Merci beaucoup mon
chou.

Ringrazio mia nonna Ivonne, che è mancata mentre scrivevo le ultime pagine.
Comunicavamo con poche parole, io e te, quelle giuste sai dove puoi leggerle. Grazie
di tutto, nonna.

Per ultimo ringrazio mio Padre, l’alpha e l’omega dei miei pensieri, perché non
c’è cosa che faccia o provi a fare, in cui non senta la tua presenza. Scusami se non
sono riuscito a fare di più

Federico Cesare Argentino Tomassetti

ix

List of Tables

2.1 Questionnaire items considered (translated from Italian to English).
Questions are condensed in respect to the administered survey. 25

2.2 Frequency of respondents for different company sizes. 32

2.3 Benefits achieved by modelling users (OR=Odds Ratio, p=Fisher test
p-value). 38

2.4 Effects of additional factors on benefit achievement rate. 39

2.5 Roles performing modeling . 41

2.6 Combined diffusion of MD* techniques (: technique used, #: tech-
nique not used). 42

2.7 Frequency of expectations . 46

2.8 Problems encountered preventing adoption of MD*. 52

2.9 Benefits achievement correlation. 69

2.10 Correlation of potential problems. 69

3.1 Answers to acceptance assessment questionnaire for different roles:
M - Manager, SA - Software architect, PM - Project Manager, D
- Developer. O/C = Open/Closed question. The numbers reported
refer to a Likert scale ranging from 1 (Strongly disagree) to 5 (Strongly
agree). 85

3.2 Responses to open ended items (translated from Italian into English) 90

4.1 Productivity of pilot projects vs. baseline (function points) 104

4.2 Motifs with main effect and era of appearance 108

4.3 Motif summary: Incremental adoption 109

4.4 Motif summary: Toolsmithing . 111

4.5 Motif summary: Integration . 112

4.6 Motif summary: Support . 112

4.7 Motif summary: Automatic enforcement 114

4.8 Motif summary: Generated code quality 115

4.9 Motif summary: RoI for adopters . 116

4.10 Motif summary: Distributed development 117

x

5.1 Categories for the implementation of language interactions among
different artifacts . 133

6.1 Percentage of cross language commits (RQ 1) 142
6.2 CLRext (RQ 2.1) . 142
6.3 CLRextA,extB (RQ 2.2) . 143
6.4 Odds ratio of the defectivity in respect to the relation between pairs

of extensions (RQ 3.3) . 143
6.5 Relation between classification in ILM and CLM and presence of

defects (RQ 3.1 and 3.2) . 145

7.1 Statistics of the benchmark proposed in this paper. Any artifact is
considered, excluded pictures. The number of language involved con-
siders also the natural language text. The number of cross-language
relations is computed considering HTML and JS artifacts (excluded
lib artifacts). 151

7.2 List of the features exploited in the proposed work. 158
7.3 An excerpt of the correlation matrix, where we highlighted the cor-

relation scores of the features to the class. From it we observe that
tfidf, perc diff min, diff max, and perc diff max are inversely corre-
lated with the class to predict. For such a reason, we leave these four
features out of the predictive model. 159

7.4 Precision (p), Recall (r) and F-measure (F1) results of our approach
using three different classifiers. 159

7.5 Precision (p), Recall (r) and F-measure (F1) results of the baselines
and our proposed approach. 159

8.1 Most interacting languages in a sample of five Apache projects 163
8.2 j.m stands for jetbrains.mps, c.m.c stands for com.mbeddr.core,

c.m.cc stands for com.mbeddr.cc. ind. = independent, ext. = ex-
tension, sem. = semantic, syn = syntactic. Regarding the com-
pleteness the abstract and concrete syntax are not reported because
present for each component. C=constraints aspect, D=dataflow as-
pect, G=generation aspect, TR=translation aspect, TY=typesystem
aspect. Ind. = Independency, Ort. = Orthogonality, Dom. = Domain 170

xi

List of Figures

2.1 Questionnaire structure. 24
2.2 Options presented in questions Dev09 and Dev11. 27
2.3 Size of respondents’ companies . 32
2.4 Proportion of modeling usage per company size. 33
2.5 Diffusion of MD* techniques among modellers per company size. . . . 34
2.6 Staff (middle) and Organization experience (up and down) in mod-

elling and MD* . 37
2.7 Usage and type of DSLs. 40
2.8 Which role writes the models. 41
2.9 Maturity with respect to company size (left) and experience in mod-

elling (right) . 44
2.10 Benefits achieved. By “Basic modelling” we mean use of models not

resorting on any MD* technique. Circles indicated statistically sig-
nificant difference. 45

2.11 Relations among benefits expectations. 47
2.12 Prevalence of problems limiting adoption of modeling. 48
2.13 Problem occurrence ratio per company size category. 51
2.14 Mind map of the experts’ opinions . 54
2.15 Achievable benefits with Modelling and MD* techniques adoption

effects. 56

3.1 Layers of the case study architecture 73
3.2 Models and transformations . 77
3.3 Excerpt of the intermediate Model 79

4.1 Overall timeline . 96
4.2 Ecosystem before MDD . 97
4.3 Ecosystem during the Informal era 99
4.4 Ecosystem during the Assessment era 100
4.5 Ecosystem during the Investment era 102
4.6 Ecosystem during the Maturity era 104
4.7 Ecosystem during the Community era 107

xii

5.1 Frequency of semantic cross-language interaction categories 136

7.1 A Javascript AST embedded in a HTML AST. 153
7.2 Example of cross language relations organized in hierarchies. 154

8.1 Editing the XML configuration file inside MPS without any extension. 172
8.2 The XML file generated opned in a text editor. 172
8.3 The system showing autocompletion. 173
8.4 The system showing a broken reference. 173

xiii

Contents

Summary iv

Acknowledgements vi

1 Introduction 1
1.1 External factors affecting our ability to think 2

1.1.1 Languages . 2
1.1.2 Notations . 4
1.1.3 Tools . 5

1.2 External factors affecting our programming ability 6
1.2.1 Languages . 6
1.2.2 Notations . 7
1.2.3 Tools . 8

1.3 Programming paradigms based on improved abstractions 9
1.3.1 Libraries development and Metaprogramming 10
1.3.2 Model-driven development . 11
1.3.3 Language Specific Engineering 12

1.4 Research design . 13
1.4.1 Phase A: adoption of modeling and domain specific languages 14
1.4.2 Phase B: combining multiple languages 15

2 Relevance, benefits and problems of modeling and DSL adoption 17
2.1 Introduction . 17
2.2 Study definition . 19

2.2.1 Research Questions . 19
2.2.2 Population and sampling strategy 22
2.2.3 Survey Preparation and Execution 22
2.2.4 Questionnaire Design . 23
2.2.5 Analysis methodology . 27

2.3 Findings about relevance of modelling and MD* 31
2.3.1 The sample . 32

xiv

2.3.2 RQ1: relevance and diffusion 33
2.3.3 RQ2: experience level . 35

2.4 Findings about how software modelling and MD* are applied 40
2.4.1 RQ3: languages and notations 40
2.4.2 RQ4: processes and tools . 40
2.4.3 RQ5: factors affecting maturity 42

2.5 Findings about benefits and problems 44
2.5.1 RQ6: benefits expectations . 44
2.5.2 RQ7: benefits achievement . 47
2.5.3 RQ8: problems . 50

2.6 Debriefing session . 53
2.6.1 Issue 1) Experience in MD* is very low 53
2.6.2 Issue 2) The percentage of code that is generated is often low 55
2.6.3 Issue 3) Micro-companies appear to be more mature in MD*

than larger companies . 55
2.6.4 Question) What is needed to improve the maturity and foster

the diffusion of MD* in Italy? 55
2.7 Discussion . 56
2.8 Threats to validity . 59
2.9 Related work . 62

2.9.1 Literature reviews . 63
2.9.2 Surveys . 63
2.9.3 Case studies . 65
2.9.4 Experience reports . 66

2.10 Summary and future work . 67

3 Modeling adoption in a small company: the Trim case-study 71
3.1 Introduction . 71
3.2 Case Study background . 73

3.2.1 Motivations for MDD . 74
3.2.2 Project constraints . 74
3.2.3 Perceived risks . 74
3.2.4 Scope of the solution . 75

3.3 Case Study solution . 76
3.3.1 Domain model . 76
3.3.2 The intermediate meta-model 78
3.3.3 Generated artefacts . 78
3.3.4 Supporting tools . 80

3.4 Risks management . 81
3.4.1 Lessons learned . 81
3.4.2 Risk mitigation . 82

xv

3.5 Acceptance assessment . 83

3.5.1 Questionnaire definition . 83

3.5.2 Discussion of responses . 84

3.5.3 Results evaluation . 84

3.5.4 Acceptance . 86

3.5.5 Process changes . 87

3.6 Related work . 87

3.7 Summary . 89

3.8 Appendix - Responses to open ended items 90

4 Modeling adoption in large company: the CSI case-study 91

4.1 Introduction . 91

4.1.1 Context . 92

4.1.2 Motivation . 92

4.1.3 Organization of the work . 93

4.2 Method . 93

4.3 History . 96

4.3.1 Before MDD Era . 97

4.3.2 Informal Era . 98

4.3.3 Assessment Era . 100

4.3.4 Investment Era . 102

4.3.5 Maturity Era . 103

4.3.6 Community era . 106

4.4 Motifs . 108

4.4.1 Incremental adoption . 109

4.4.2 Toolsmithing . 110

4.4.3 Integration . 111

4.4.4 Support . 112

4.4.5 Automatic enforcement . 113

4.4.6 Quality of the generated code 115

4.4.7 RoI for external adopters . 116

4.4.8 Distributed platform development 117

4.5 Discussion . 118

4.6 Related work . 120

4.6.1 Deployment of MDD and SPLs 120

4.6.2 Software ecosystems . 123

4.7 Summary . 126

4.8 Modeling adoption: comparison between small and large companies . 127

xvi

5 Cross-language interactions: a classification 129
5.1 Introduction . 129
5.2 Related work . 130
5.3 Method . 131
5.4 Categories . 132

5.4.1 Shared ID - Example . 133
5.4.2 Shared data - Example . 133
5.4.3 Data loading - Example . 134
5.4.4 Generation - Example . 134
5.4.5 Description - Example . 135
5.4.6 Execution - Example . 135

5.5 Classification . 136
5.6 Summary . 137

6 A preliminary empirical assessment on the effects of cross-language
interactions 139
6.1 Definitions . 139
6.2 Design . 140
6.3 Case study . 141
6.4 Results and discussion . 143
6.5 Threats to validity . 145
6.6 Summary . 146

7 Spotting automatically cross language interactions 147
7.1 Introduction . 147
7.2 Related work . 149
7.3 Benchmark . 151
7.4 Method . 152

7.4.1 ASTs construction . 152
7.4.2 Context . 153
7.4.3 Features derivation . 154
7.4.4 Classification . 155

7.5 Experiment and results . 155
7.6 Discussion and outlook . 156

8 Language integration using language workbenches 161
8.1 Introduction . 161
8.2 Prevalence of Language Interactions 162
8.3 Problems Given by Language Interactions 164

8.3.1 Anectodal Evidence . 164
8.3.2 Empirical Evidence: Side Effects of Languages Interaction . . 166

xvii

8.4 Language Integration in Language Workbenches 167
8.4.1 Language Components Classification 167
8.4.2 Approach to integration . 171

8.5 Related Work . 174
8.5.1 Approaches Working on Family of Languages 174
8.5.2 General Approaches . 175

8.6 Conclusions and Research Agenda . 176

9 Conclusions 179
9.1 Answers to research questions . 180
9.2 Practical Implications . 184
9.3 Outlook . 185
9.4 Final remarks . 186

Bibliography 189

xviii

Chapter 1

Introduction

I observe a cultural tradition, which in all probability has its roots in
the Renaissance, to ignore this influence, to regard the human mind as
the supreme and autonomous master of its artifacts. But if I start to
analyze the thinking habits of myself and of my fellow human beings, I
come, whether I like it or not, to a completely different conclusion, viz.
that the tools we are trying to use and the language or notation we are
using to express or record our thoughts are the major factors determining
what we can think or express at all! The analysis of the influence that
programming languages have on the thinking habits of their users, and
the recognition that, by now, brain-power is by far our scarcest resource,
these together give us a new collection of yardsticks for comparing the
relative merits of various programming languages [Dijkstra, 1972].

The languages we use to represent, formalize and think about our programs have
long reaching effects on the way we look at problems, envision the solutions and the
processes we adopt to bridge the problems to our solutions; languages are the most
important tools we use to create software. This thesis address this broad research
questions:

How can we adopt and combine specific languages for software development?

In this Chapter we motivate the importance of language, notations and their
supporting tools discussing their effects on all mental activities (Sect. 1.1), and in
particular on the mental activity we are more interested into: programming (Sect.
1.2). Later we briefly summarize software development paradigms designed to higher
the level of abstractions (Sect. 1.3). Finally we present the research design we
adopted to address the goal stated few lines above (Sect. 1.4).

1

1 – Introduction

1.1 External factors affecting our ability to think

As human beings the ability to use tools to improve our capacities is arguably among
our most important skills. As a species, we have been able to improve our natural
performance and our chances of accessing the food, protect ourself by predators and
improve our living conditions. Thanks to tools human beings managed to emerge
among stronger and faster competitors.

Nowadays the most common challenges at hand for human beings are not any-
more physical but are instead typically intellectual. Still we can benefits from tool
to support also these activities.

Just as you cannot do very much carpentry with your bare hands, there is
not much thinking you can do with your bare brain (quoted in [Dennett,
1996])

This sentence expresses the commonality between physical and mental activities.
It is commonly known that tools augmented the physical possibilities of human
beings. On the same way there is a category of tools leveraging the human mental
potential.

To understand the effect of the external factors considered (language, notation
and tools) used on our ability to think let’s consider some examples related to
mathematics. Many operations are simply not possible without the concept of zero
(language), multiplications are more difficult to execute using roman numbers in
respect to arabic numbers (notation). Finally consider the kind of operations you
are able to solve with or without using pen and paper (tools). Let’s consider all of
these aspects in more details.

1.1.1 Languages

The origin of language has been for decades one of the most debated topic in the
scientific community. Different researchers suggest that the role of the language in
developing our mental abilities as a species was fundamental. We report the opinion
of Charles Darwin:

The mental powers in some early progenitor of man must have been more
highly developed than in any existing ape, before even the most imperfect
form of speech could have come into use; but we may confidently believe
that the continued use and advancement of this power would have reacted
on the mind by enabling and encouraging it to carry on long trains of
thought. A long and complex train of thought can no more be carried on
without the aid of words, whether spoken or silent, than a long calculation
without the use of figures or algebra [Darwin, 1871, p.57].

2

1.1 – External factors affecting our ability to think

Logan suggests that languages emerge to cope with overwhelming complexity
[Logan, 2007]. The first language would have been emerged to permit to move
reasoning from perceptions of single facts to the manipulation of concepts, grouping
similar facts under one single label. According to Logan writing can be regarded as a
new language, different from speech. It would permit to order complexity in a more
structured way, than it is possible with oral natural languages. This consideration
is supported by different findings on structural and semantic differences between
speech and writing [Akinnaso, 1982]. Language is not just a mean to communicate
but it is also a mean for reasoning and thinking: different forms of language (oral
and writing) support differently these activities.

Dennett suggests that languages are the tools permitting to develop explicit
generalization, while animals who can not use proper languages are limited to im-
plicit generalization [Dennett, 2000]. In this sense the language used becomes a tool
enabling more powerful form of abstractions.

In the first half of the twentieth century the idea of strong linguistic relativity was
supported with enthusiasm by the majority of the academical community. According
to this principle the language we speak determine absolutely what we are able to
think about. This principle was derived from the initiated by Sapir and prosecuted
by Whorf and it is also referred as the Sapir-Whorf hyphothesis. Here follows some
extracts:

Human beings do not live in the objective world alone, nor alone in
the world of social activity as ordinarily understood, but are very much
at the mercy of the particular language which has become the medium
of expression for their society. It is quite an illusion to imagine that
one adjusts to reality essentially without the use of language and that
language is merely an incidental means of solving specific problems of
communication or reflection. The fact of the matter is that the ’real
world’ is to a large extent unconsciously built upon the language habits of
the group. No two languages are ever sufficiently similar to be considered
as representing the same social reality. The worlds in which different
societies live are distinct worlds, not merely the same world with different
labels attached... We see and hear and otherwise experience very largely
as we do because the language habits of our community predispose certain
choices of interpretation. [Sapir, 1929, p. 69]

We dissect nature along lines laid down by our native languages. The
categories and types that we isolate from the world of phenomena we do
not find there because they stare every observer in the face; on the con-
trary, the world is presented in a kaleidoscopic flux of impressions which
has to be organized by our mindsand this means largely by the linguistic

3

1 – Introduction

systems in our minds. We cut nature up, organize it into concepts, and
ascribe significances as we do, largely because we are parties to an agree-
ment to organize it in this wayan agreement that holds throughout our
speech community and is codified in the patterns of our language. The
agreement is, of course, an implicit and unstated one, but its terms are
absolutely obligatory; we cannot talk at all except by subscribing to the or-
ganization and classification of data which the agreement decrees.[Whorf,
1940, pp. 21314]

The idea that the language could determine in an absolute manner what human
beings are able to think was then criticized and rejected from the scientific com-
munity. Recently the idea returned in a relaxed form: different experiments now
confirm an influence of the language used on the way of thinking (e.g., [Gumperz
and Levinson, 1996, Pütz and Verspoor, 2000]) while admitting the possibility of
thinking concepts for which a word does not yet exist. In that case we are lacking
support for manipulate that concept, and related reasoning would be more difficult
but not strictly impossible.

1.1.2 Notations

In the field of mathematics the usage of improved notations made possible for a vast
majority of the population to develop skills that were limited to the brightest minds
of the past. Whitehead explains that in details:

By relieving the brain of all unnecessary work, a good notation sets it free
to concentrate on more advanced problems, and, in effect, increases the
mental power of the race. Before the introduction of the Arabic notation,
multiplication was difficult, and the division even of integers called into
play the highest mathematical faculties. Probably nothing in the modern
world would have more astonished a Greek mathematician than to learn
that ... a large proportion of the population of Western Europe could per-
form the operation of division for the largest numbers. This fact would
have seemed to him a sheer impossibility ... Our modern power of easy
reckoning with decimal fractions is the almost miraculous result of the
gradual discovery of a perfect notation. [...] By the aid of symbolism,
we can make transitions in reasoning almost mechanically, by the eye,
which otherwise would call into play the higher faculties of the brain.
[...] It is a profoundly erroneous truism, repeated by all copy-books and
by eminent people when they are making speeches, that we should culti-
vate the habit of thinking of what we are doing. The precise opposite is
the case. Civilisation advances by extending the number of important op-
erations which we can perform without thinking about them. Operations

4

1.1 – External factors affecting our ability to think

of thought are like cavalry charges in a battle – they are strictly limited
in number, they require fresh horses, and must only be made at decisive
moments.[Whitehead, 1911, p. 59]

While the introduction of arabic ciphers into the western civilization contribute
to bring in the reach of human minds progresses which were simply unthinkable be-
fore there is still room for improvements. Natural languages which employs simpler
schemas to express numbers lead to higher performance in international mathemat-
ics competition. That is the case for example of the Korean language represents
numbers. In Korean numbers from 1 to 10 are represented by words of just one
syllable and the system is consistently regular. The effects on that on calculation
performance were studied in depth [Park, 2004].

1.1.3 Tools

Andy Clark et al. introduced the concept of active externalism. Considering the
active role of the environment in driving cognitive processes they suggest that the
human brain and the external tools are part of a complexive system, i.e. tools used
to support reasoning can be seen as an extension of the mind [Clark and Chalmers,
1998].

Clark suggests that the biological brain has evolved and matured in ways which
factor in the reliable presence of a manipulable external environment. Nersessian
concludes that engineering scientists think by means of the artifact models they
design and build and without them they are almost unable to think [Nersessian,
2009]. So tools can support designing and thinking, and so also programming which
is a specific mental activity. In some way languages can be seen as particular tools
supporting reasoning.

Technology in particular made available an unprecedented set of tools that we
can exploit to improve the possibilities of out mind. According to some authors the
border itself from our proper mind and the tools it is taking advantage of, is difficult
to establish, it sometimes blurry, making in some sense us a sort of cyborgs:

What used to be tools and machines that we could keep at arms length,
has crept up on us, turning into something with which we constantly
interact. People and technology have become intertwined. You cannot
understand the one without understanding the other.[Dahlbom, 1996]

5

1 – Introduction

1.2 External factors affecting our programming

ability

In the previous section we examined how languages, notations and tools affect in
general the ability to execute mental tasks. In this section we present some findings
about the influence of the same factors on the set of mental tasks related to software
development and in particular to programming.

1.2.1 Languages

Paul Graham introduces the Blub Paradox [Graham, 2001]: by interpreting pro-
gramming through the lens of the programming languages we know, we are not
able to understand the benefits and power of other paradigms. Developers knowing
only ”less powerful” languages are unable to appreciate possibilities given by ”more
powerful” languages because they are not able to consider the concepts that more
powerful languages permit to express. We tend to interpret this particular mental
activity according to our main tool of the trade: the programming language that
we are using. As consequence, by adopting more ”powerful” languages, we acquire
more ways to think about software, we get new prespectives on it which could make
solving a problem significantly easier. The definition of ”powerful” is not strict and
we believe it is relative to the kind of problems considered. In a certain case it could
be a better support for regular expressions, in other cases an advanced modularity
or the support to functions as first-citizens. However there are studies that were
conducted on approached to measure the ”power” of languages in general [Felleisen,
1990, Mitchell, 1993]. Other studies were conducted on the power of specific lan-
guages [Hidders et al., 2005].

Some comparisons were made between programming languages and other formal
languages. For example Libkin [Libkin, 2001] compared SQL and relational alge-
bra. It results that SQL cannot express recursive queries, which are necessary to
determine reachability. The author proved that recursion (introduced in SQL3) add
to the expressive power of the previous version of the language (SQL2) because it
enriches the possibility to express concepts which were not expressable before. In
our opinion the power of a language is not determined just by what it permits or
permits not to express something but also how naturally it permits to express it:
direct, not redundant support for concepts relief the brain from unnecessary work
that has to be done when the language permit to express something, but only in a
redundant, obscure way.

However some studies were conducted to evaluate a-posteriori the power of a
language or to confront were devised, still into the foreseeable future defining new
abstractions remains a conquer for the human mind.

6

1.2 – External factors affecting our programming ability

1.2.2 Notations

The notation is the representation through which the developer perceive the lan-
guage. The most common notations in software development are textual but alter-
natives are possible: graphical notations (e.g., UML) or spreadsheet notations (e.g.,
Excel). Tabular notations were also experimented, for example to express binary
formulas [Pane and Myers, 2000].

In 1997 Whitley [Whitley, 1997] organized empirical evidence for and against
graphical notations. Graphical notations help to provide better organization to
the information displayed and make explicit relations which are normally implicit
in textual notations (for example, using shared identifiers). Graphical notations
tend to be more useful as the size or complexity of the problem grows [Day, 1988].
Moreover they are particularly appreciated by non-programmers [Baroth and Hart-
sough, 1995], who benefit more from them [Neary and Woodward, 2002]. Graphical
notations were employed in Scratch: an IDE tailored for teaching programming at
children between 8 and 16 years old [Maloney et al., 2010]. A similar project is Alice
[Dann et al., 2008]. One reason for the better performance with graphical notations
could be that they lead to build in-mind better models of the problem [Navarro-
Prieto and Cañas, 2001]. One problem of graphical notation is the Deutsch Limit1

(the lower screen density of graphical notations in respect to textual notations).
We wonder if the simple fact that larger and cheaper monitors are available on the
market could slightly reduce the importance of this aspect.

It emerges that every evaluation depends on the task being performed [Green,
1989]: a certain notation can be the most suitable for a particular task but terrible
for another, leading to poorer performance in respect to both time of completion
and correctness. For some particular tasks some comparisons between different
notations were made, for example by Andrews [Andrews and Schneider, 1983] on
comprehension and analysis of concurrent programs.

A correct notation also improves our ability to reason on a particular model.
Gross [Gross, 2009] in particular discuss the role of graphical notation.

Iverson discusses about characteristics that should be embodied by a good no-
tation in his Turing Award lecture [Iverson, 1980] and presented some arguments
on the usefulness of multiple notations. He discusses how these characteristics can
influence our way to write programs, namely: executability, universality, ease of
expressing constructs arising in problems, suggestivity, ability to subordinate detail,
economy, amenability to formal proofs.

While arguably, the most used programming language is Excel, with its spread-
sheet paradigm more traditional software development still is based almost solely on

1http://en.wikipedia.org/wiki/Deutsch_limit

7

http://en.wikipedia.org/wiki/Deutsch_limit

1 – Introduction

textual notations. This is due to different reasons, we wonder if all of these reasons
are intrinsic in the difference between these notations or if they could depend on
a superior tool support developed for textual notations for diff/comparing, storing,
etc. Merkle [Merkle, 2010] explained the advantages of the textual notation for DSLs
but we think the same apply to all languages, also GPLs. Among the advantages
for textual notation he listed: easy information exchange via e.g. mail, integra-
tion into existing tools like diff, merge and version control and most important the
fast editing style supported by the ”usual” IDE support like code completion, er-
ror markers, intentions and quick fixes. Some development activities are already
largely performed using visual notations, for example GUI builders permit to define
the layout of widgets in a visual way, with the corresponding code being generated
later. Maybe more appropriate tool support could enable the adoption of different
notations.

Considering that more notations can be attached to the same language the opti-
mal solution could be the adoption of different notations to perform different tasks,
optimizing the performance achieved in each of these tasks, and letting developers
gain different insights by looking at the same code in different forms.

1.2.3 Tools

Kasurinen et al. [Kasurinen et al., 2013] analyzed the role of tools supporting a
particular kind of software development: game development. They reported that
the quality of tools is perceived as high. Practitioners value at most the flexibility of
tools, which permits to achieve adaptability to changing requirements and plans. We
believe that the quality of supporting tools in this branch of software development
permitted to improve greatly the productivity. The same quality of domain-specific
supporting tools is not available in other branches and that is unfortunate.

Bolchini et al. [Bolchini et al., 2008] studied how hypermedia development of
large applications. can be carried out by non-professional thanks to high quality of
available development tools, which enables them to focus on the domain knowledge
they have, instead of the technical knowledge required to develop traditionally the
application.

Tony Clark and al. writing about Language-Driven Development [Clark et al.,
2004] described how modeling tools can support reasoning:

Rather than dealing with a plethora of low level technologies, developers
can use powerful language abstractions and development environments
that support their development processes. They can create models that
are rich enough to permit analysis and simulation of system properties
before completely generating the code for the system. They can ma-
nipulate their models and programs in significantly more sophisticated

8

1.3 – Programming paradigms based on improved abstractions

ways than they can code. Moreover, provided the language definitions
are flexible, they can adapt their languages to meet their development
needs with relative ease.[Clark et al., 2004, p. IX]

Effective tools can be developed to support specific manipulations of concepts
that are idiomatic to a particular domain. To reach this goal we need higher-level,
domain specific languages. The possibility to have advanced tools is enabled by the
availability of more appropriate languages.

1.3 Programming paradigms based on improved

abstractions

Programming languages initally were conceived to let programmers think in the
terms of the machine hardware, so that they could write code as optimized as pos-
sible. The next important step was to create a sort of portable assembler (C);
portability was the goal which made acceptable a small increment in the level of
abstraction at the cost of a (slight) performance hit. As hardware improvements
make sustainable to not focus exclusively on performance, programming evolved to-
wards increasingly higher levels of abstactions. A few industry sectors were then
able to sustain ”their own” language: FORTRAN (1955) for engineering and scien-
tific community, LISP (1958) for Artificial Intelligence applications, COBOL (1959)
for business and financial services.

As programming gain importance new, more specialized languages were devel-
oped: from Pascal (1970) for teaching programming, ADA (1980) for development
specific for the American department of defense, MATLAB (late ’70) for develop-
ment of numerical computing applications.

Over the years a number of very specialized languages, the so called Domain
Specific Languages emerged to be used in substitution of General Purpose Languages
for specific tasks. Among the other we cite LATEX(1980), PostScript (1982), HTML
(1991), CSS (1996).

An interesting attempt leap forward was Literate Programming, a term conceived
by Donald Knuth:

Let us change our traditional attitude to the construction of programs:
Instead of imagining that our main task is to instruct a computer what
to do, let us concentrate rather on explaining to human beings what we
want a computer to do. [Knuth, 1984]

Donald Knuth also realized the first tool supporting this approach. It was named
WEB and it let describe the program in natural language embedding into these

9

1 – Introduction

description snippets of code. Later from the description a LATEXdocument was gen-
erated and source code in Pascal was extracted.

The possibility to develop languages that fit the problem at hand, your mind-
set and your skills is an enormous advantage but higher abstrations can also be
introduced by idioms and shared techniques for using a language. Consider Design
Patterns[Gamma et al., 1994]: one of their goal is to build a jargon which experts in
a certain field can use to communicate about their solutions and the way the achieve
them. On Design Patterns there is interesting thought from Graham:

This practice is not only common, but institutionalized. For example, in
the OO world you hear a good deal about ”patterns”. I wonder if these
patterns are not sometimes evidence of case (c), the human compiler, at
work. When I see patterns in my programs, I consider it a sign of trouble.
The shape of a program should reflect only the problem it needs to solve.
Any other regularity in the code is a sign, to me at least, that I’m using
abstractions that aren’t powerful enough - often that I’m generating by
hand the expansions of some macro that I need to write. [Graham, 2002]

On one hand Design Patterns permit to software designers to communicate,
expressing in one word the path chose to create a solution to a problem, on the
other hand the problem is solved only when communication from human to human
is considered while the problem still remains in communication between human (the
programmer) and the machine, i.e. the need of Design Patterns is a symptom that
it is not possible to express to machine a certain concept which human can think as
atomic, which human beings can abstract but the language permits not to.

In the rest of the section we present specific ways to build a specific vocabulary
(Sect. 1.3.1) and your own abstractions (Sect. 1.3.2) possibly supported by your
own syntax (Sect. 1.3.3).

1.3.1 Libraries development and Metaprogramming

A first method to higher the conceptual level of the code is to enlarge its dictionary
through the development of new libraries, which permit to express concisely large
and complex operations. These efforts are limited by the expressive power of the
language. The concept of library of code appeared in 1959 [Wexelblat, 1981, p. 274]
in the JOVIAL programming language. Another evolution step was the introduction
of subprograms in FORTRAN. Nowadays the usage of standard libraries or external
libraries is extremely common, with systems devoted just to maintain the libraries

10

1.3 – Programming paradigms based on improved abstractions

used by each project: think about Maven for Java2 or RubyGems3 for Ruby.

Other way to enlarge the power of language is the adoption of metaprogram-
ming techniques. Metaprogramming, which powers depends on the language, can
permit to express concisely concepts which are later translated in automatic code
modifactions. Some languages, in particular dynamic languages (e.g., Ruby) or func-
tional languages (e.g., Lisp) have strong metaprogramming support which permits
to change significantly the appearance of the languages. As consequence the concept
of Internal Domain Specific Language was born.

1.3.2 Model-driven development

The idea of developing software based on models has been part of several approaches
and methodologies proposed in the last 20 years [Booch, 1991]. Model-driven devel-
opment (MDD) leverages detailed models by generating automatically the applica-
tion code [Jiang and Hu, 2008] or interpreting them at runtime [Zeng et al., 2005].
Such approach has been proposed both for general purpose development [Jacobson
et al., 1999] and for specific domains (e.g., real-time applications [Selic et al., 1994]).

The term “model” is very general; it is difficult to provide a comprehensive yet
precise definition of a model. For us, a model is an artefact realized with the goal to
capture and transfer information in a form as pure as possible limiting the syntax
noise. Examples of models include UML design models [Object Management Group,
2011b], process models defined through BPMN [Object Management Group, 2011a],
Web application models defined through WebML [Ceri et al., 2000] as well as textual
Domain Specific Language (DSL) models4 [Fowler and Parsons, 2011].

Given that models are so heterogeneous and the processes involving them so
varied, it is actually difficult to define the exact boundaries for modelling. Moreover,
models can be used practically in different ways and with different levels of maturity
[Tomassetti et al., 2012]. While in theory we have a set of best practices, in practice
we could find mixed, half baked and personalized solutions. As a consequence, the
different uses of modelling are complex and difficult to classify precisely.

When models constitute a crucial and operational ingredient of software devel-
opment then the process is called model driven. There are different model driven
techniques: Model Driven Engineering (MDE) [Schmidt, 2006], Model Driven Devel-
opment (MDD) [Mellor et al., 2003] and Model Driven Architecture (MDA) [Kleppe
et al., 2003]. MDE is the broadest one; it is a software methodology that focuses

2http://maven.apache.org/

3http://rubygems.org/

4Many researchers would probaly not include DSLs among the model-driven techniques.

11

http://maven.apache.org/
http://rubygems.org/

1 – Introduction

on creating and exploiting models, which are typically given as abstract represen-
tations using a modelling language (e.g., UML but also BPMN or a home-grown
DSL [Fowler and Parsons, 2011]). Instead, MDD is a development approach that
uses models as the main artefacts of the development process. In MDD, models
at higher-level of abstraction are (progressively) transformed into models at lower-
level of abstraction until the models are executable using either code generation or
model interpretation. In this latter case, executable models are directly executed/in-
terpreted by means of specific environments [Mellor and Balcer, 2002]. The main
difference between MDE and MDD is that MDE goes beyond the pure develop-
ment activities and encompasses also other software engineering tasks (e.g., models
evolution and reverse engineering of legacy systems). Finally, MDA is a registered
trademark of Object Management Group (OMG) recommending the usage of OMG
standards (e.g., UML). MDA is more specific than MDD and defines the system
functionality using the notions of platform-independent model (PIM) and platform-
specific model (PSM). The main idea at the base of model-driven techniques is to
realize higher level artifacts (i.e., models) from which implementation artifacts can
be obtained either through code generation or through interpretation.

1.3.3 Language Specific Engineering

Domain Specific Languages are languages develop to express concisely a limited
number of concepts pertaining to a specific concern. Domain Specific Languages
can be used together with General Purpose Languages to create complete systems.
However a few approaches were devised with the purpose of creating systems using a
combined set of DSLs. We call the approaches based on the combination of specific
languages as Language Specific Engineering.

For example Language Oriented Programming (LOP) is a term introduced by
Ward in its paper in 1994 [Ward, 1994] This approach require the development of
DSLs to represent each part of the system. The application is then composed by
domain knowledge, expressed through DSLs and the generators able to translate
this domain knowledge in the implementation.

Dimitriev discusses on LOP presenting the supporting workbench that was de-
veloped at JetBrains named Meta-Programming System (MPS) [Dmitriev, 2004].
He points out the need of a workbench that make development of new languages
and supporting environement nearly as easy as common programming: develop a
new language should be comparable to develop a new library but with the advan-
tages brought by a specific syntax and specific tools. The goal is to make feasible
for programmers to craft new tools to be used to design and implement complex
systems instead of using general-purpose tools.

General-purpose languages require me to translate high-level domain

12

1.4 – Research design

concepts into low-level programming features, most of the big picture is
lost in the resulting program. When I come back to the program later, I
have to reverse engineer the program to understand what I originally in-
tended, and what the model in my head was. Basically, I must mentally
reconstruct the information that was lost in the original translation to
the general-purpose programming language.5

The idea of LOP presented by Dimitriev require to abandon text form for storing
programs.

Humm et al. introduced DSL stacking to realize Language Oriented program-
ming [Humm and Engelschall, 2010]. This method for implementing Language-
Oriented Programming develop DSLs and general-purpose languages incrementally
on top of a base language.

Language engineering or metaprogramming aims to make these advantages avail-
able even to smaller projects, to make it feasible and convenient to develop lan-
guaages on a per-project basis. The problems to solve are many: first of all we
have better LW to develop languages and supporting tools fast but we need good
interoperability and good learnability, also guidelines and expertise in developing
languages (until now it was a very rare skillset to be a language developer).

1.4 Research design

When facing the challenge posed by programming or in general develop models and
systems we should choose wisely the best tools for the daunting tasks, hence choosing
the right languages and the right notations for the task at hand is a fundamental
part of the process.

Of course choose or even create the best language for the task pose a lot of
different challenges. Languages have to be designed, evaluated and evolved. A
language to be truly useful need an ecosystem of supporting tools: from compilers
and editors to debuggers and testing facilities. Once the single elements of the system
are realized with the most appropriate language, using the corresponding supporting
tools those elements still need to be integrated in a coherent, cohesive system. The
developers and the software engineers have the orchestrate those language and make
them cooperate. These challenges are at the very core of the software engineering.
This humble thesis hopes to offer a contribution in the direction of guiding the
adoption of high level languages and combine them.

This thesis is divided in two parts: in the first one we analyze the adoption
of modeling and domain specific languages, while in the second we focus on the

5See http://www.onboard.jetbrains.com/is1/articles/04/10/lop/3.html

13

http://www.onboard.jetbrains.com/is1/articles/04/10/lop/3.html

1 – Introduction

composition of languages for the realization of systems.

1.4.1 Phase A: adoption of modeling and domain specific
languages

Traditionally developers used one or more general purpose languages (GPLs) and a
few supporting languages (HTML, SQL, etc.). Higher level languages as modeling
and domain specific languages could be adopted to increase the level of abstraction.
While those languages are reported to provide relevant benefits they are not yet
mainstream. We therefore decided to study their adoption.

From the original broad research question How can we adopt and combine specific
languages for software development? we focus on Phase A on the first part:

How can we adopt specific languages for software development?

We decline this broad research questions on a set of more specific research ques-
tions:

• RQ A.1 which are the benefits expected and attained from modeling and DSL
adoption?

• RQ A.2 which are problems limiting or preventing modeling and DSL adop-
tion?

• RQ A.3 which are the processes and techniques for modeling and DSL?

• RQ A.4 which are the specificity of adoption of modeling and DSL in small
companies?

• RQ A.5 which are the specificity of adoption of modeling and DSL in large
companies and software development ecosystems?

Through the first three RQs we plan to better understand these high level lan-
guages, while later, through the last two RQs, we plan to provide some insights to
guide their adoption.

We decided to address the first three research questions through a survey among
software development companies. That gave us the possibility to analyze a large
and different number of different contexts, evaluating the effect of different aspects
and benefits (RQ A.1) and problems (RQ A.2). We could explore also how the
processes and tools adopted (RQ A.3) lead to different achievements and problems.
The survey is presented in Chapter 2.

14

1.4 – Research design

In our opinion the way techniques and processes can be adopted is influenced
by the resources and the size of the company, therefore we performed two separate
case-studies, one performed in a small companies (Chapter 3), while the second
was performed in large company, at the center of a complex software development
ecosystem (Chapter 4).

1.4.2 Phase B: combining multiple languages

Today most software development projects employs already multiple languages. We
advocate the necessity of adopting even more specific languages. While the benefits
of using the most suitable language for each task is addressed in the first part of the
thesis, in the second we focus on a consequence of the choice of using an increasing
number of languages to realize each single system: language interactions and the
necessity to design appropriately language integration.

From the original broad research question How can we adopt and combine specific
languages for software development? we focus on Phase B on the second part:

How can we combine specific languages for software development?

We decline this broad research questions on a set of more specific research ques-
tions:

• RQ B.1 how languages interact?

• RQ B.2 which are the effects of language interactions?

• RQ B.3 how can we identify language interactions?

• RQ B.4 how can we offer tool support for language integration?

This area of research is very recent at the time this thesis is being written, so
the phenomenon have to be investigated almost from scratch.

Similary to phase A, also for Phase B the initial RQs (RQ B.1 and RQ B.2) are
devoted to understanding the phenomenon, while the later (RQ B.3 and RQ B.4)
are devoted to provide insights and solutions.

To address RQ B.1 we manually analyzed artifacts written in different languages
which evolved at the same time, compiling a classification of the different forms of
interactions which link artifacts written in different languages (Chapter 5).

To start addressing RQ B.2 we performed a preliminary experiment to verify the
effects of cross-language relations on defectivity (Chapter 6).

15

1 – Introduction

Performing this preliminar investigation on the phenomenon we decided to start
focusing on the most common form of cross-language interactions: shared-ID. We
studied the possibility of automatically spot cross-language relations (RQ B.3) by
using heuristics and machine learning techniques (Chapter 7).

To address RQ B.4 we then realized a prototype of tool support for language
integration using a language workbench (Chapter 8).

Finally all the results are summarized in the conclusions (Chapter 9).

16

Chapter 2

Relevance, benefits and problems
of modeling and DSL adoption

We performed a survey in the Italian industry about adoption of model-driven de-
velopment. Here we report the combined results published in [Torchiano et al.,
2011b, Tomassetti et al., 2012, Torchiano et al., 2012, Torchiano et al., 2013]. It was
a joint work realized with Marco Torchiano, Filippo Ricca, Alessandro Tiso, and
Gianna Reggio.

Through the survey and the debriefing sessions we had with modeling experts
we addressed some of the principal research questions of this thesis:

• RQ A.1 which are the benefits expected and attained from modeling and DSL
adoption?

• RQ A.2 which are problems limiting or preventing modeling and DSL adop-
tion?

• RQ A.3 which are the processes and techniques for modeling and DSL?

We were able to answer additional research questions, not directly relevant for the
main goal of thesis but still useful to acquire more knowledge about the phenomenon
and drive successive research actions. In particular this survey permitted to obtain
data bout the relevance of the phenomenon in Italy.

2.1 Introduction

Usually, model-based techniques use models to describe the architecture and design
of a system and/or the behaviour of software artefacts generally through a raise in
the level of abstraction [France and Rumpe, 2003]. Models can also be used for
other purposes, e.g., to describe business workflows or development processes.

17

2 – Relevance, benefits and problems of modeling and DSL adoption

They can be used in different phases of the development process as communi-
cation artefacts, as points of references against which subsequent implementations
are verified, or as the basis for further development. In the latter case, they may
become the key elements in the process, from which other artefacts (most notably
code) are generated.

The term “model” is very general, as we anticipated in the introduction of this
thesis.

We are interested in no specific model driven technique, therefore, in the follow-
ing, taking inspiration from [Völter, 2009], we will address all these related tech-
nologies collectively with the abbreviation MD*.

Although a lot of work has been done in the MD* context and, a wide number of
studies have been reported in literature (e.g., [Hutchinson et al., 2011a, Hutchinson
et al., 2011b, Mohagheghi et al., 2012]), and many commercial or free MD* tools
are also available (e.g., UniMod [Gurov et al., 2007], WebRatio [Acerbis et al.,
2007] and BridgePoint1), there is a lack of evidence about the relevance of MD* in
industry, and we need indication whether (or not) MD* satisfies today’s industry
needs [Mohagheghi and Dehlen, 2010].

For those reasons, two Italian universities, Politecnico di Torino and Università
di Genova, started a common project concerning software modelling and MD*. The
first step of the project aimed at achieving an accurate picture of the state-of-the-
practice of modelling and MD* in the Italian industry by means of a survey of
the Italian ICT industry. We opted for a personal opinion survey2 [Groves et al.,
2009, Kitchenham and Pfleeger, 2008] performed through the Internet, because this
is generally the most cost effective interview method [Walonick, 1997] even if it
presents well-known limitations/problems [Singer et al., 2008].

The evidence we collected about modelling and MD*, by means of this survey,
holds a value “per se” as new assets in the software engineering body of knowledge.
In addition, it brings important implications in the practice of both software devel-
opment and education/training. We think that, on the basis of the results of this
broad survey, more specific studies could be conducted to confirm and clarify the
most controversial or difficult understandable findings.

The chapter is structured as follows. Section 2.2 presents the relevant aspects of
the conducted survey such as: goals, research questions, questionnaire design, sample
identification, survey preparation/execution and analysis methodology. Findings are
presented in three different sections: (Sect. 2.3) relevance of modelling and MD*,
(Sect. 2.4) maturity of the approaches, (Sect. 2.5) benefits and problems. In

1http://www.mentor.com/products/sm/model development/bridgepoint/
2The purpose of a personal opinion survey is to produce statistics, that is, quantitative or

numerical descriptions of some aspects of the study population.

18

2.2 – Study definition

Section 2.6 we ask experts to comment some of the results which were more difficult
to interpret. In Section 2.7 we discuss the obtained results. In Section 2.8 we
examines the unavoidable threats to validity. In Section 2.9 we discuss related work
and, finally, Section 2.10 summarize results from the survey and presents ideas for
future work. Appendix 2.10 collect some detailed data which we could not discuss
exhaustively in the rest of the chapter.

2.2 Study definition

The instrument we selected to take a snapshot of the state of the practice concerning
industrial MD* adoption is that of a survey [Groves et al., 2009]. In the design
phase of the survey we drew inspiration from previous surveys (i.e., [Jelitshka et al.,
2007, Leotta et al., 2012, Torchiano et al., 2011a]) and we followed as much as
possible the guidelines provided in [Kitchenham and Pfleeger, 2008].

The survey has been conducted through the following six steps [Kitchenham
and Pfleeger, 2008]: (1) the objectives (or goals) selection, (2) goals’ transformation
into research questions (section 2.2.1), (3) questionnaire design, (4) sampling and
evaluation of the questionnaire by means of pilot executions, (5) survey execution
and, (6) analysis of results and packaging.

We conceived and designed the survey with the goals of understanding:

G1 the actual relevance of software modelling and MD* in the Italian industry,

G2 the way software modelling and MD* are applied (i.e., which processes, lan-
guages and tools are used), and

G3 the motivations either leading to the adoption (expected benefits) or preventing
it (experienced or perceived problems).

In the context of this thesis G2 contributes to answer RQ A.3 while G3 con-
tribute to RQ A.1 and RQ A.2. In the rest of the chapter research questions
numbers will not refer to the general numbering of the thesis but to the numbering
of the research questions specifically formulated for the survey.

2.2.1 Research Questions

Here we specify the research questions individuated for each goal.

Goal 1: relevance of software modelling and MD*

RQ1: What is the diffusion and relevance of modelling and MD* in the Italian
industry?

19

2 – Relevance, benefits and problems of modeling and DSL adoption

Finding out the proportion of IT professionals actually adopting modelling
and MD* should allow us to understand how important such development
techniques are. Knowing whether they represent niche, commonly used, or
mainstream methodologies has a dramatic impact on the conclusions we can
draw.

RQ1.1: What is the adoption ratio of individual MD* techniques?

Since MD* is typically applied with diverse blends of basic techniques,
we want to examine which techniques are used (e.g., code generation or
model execution) and which are the most relevant.

RQ1.2: What is the diffusion by company size category?

Some authors (e.g., Selic [Selic, 2003]) believe MD* is mostly intended
for large projects carried on by large companies; is it true? An empirical
validation of such a claim requires breaking down the prevalence figures
by company size.

RQ2: What is the experience in modelling and MD*?

From initial experimentations to proper mastery, different levels of maturity
are possible. MD*, as all the software development approaches, present their
own learning curve: at each level of maturity different outcomes can be de-
rived. We are interested in understanding how much companies master MD*
techniques and the effects of the maturity of the approaches on the outcomes
obtained.

Goal 2: how software modelling and MD* are applied

RQ3: Which modelling languages and notations are used in the modelling phase
and for MD*?

Modelling languages are various: they can have different nature (procedural,
declarative, functional) and use different notations (textual, graphical, tabu-
lar), be general-purpose or domain-specific. We are interested in understand-
ing which languages are used for which tasks and how the language chosen
affect the outcome.

RQ4: What kind of processes and tools does Italian industry adopt to support
modelling and MD*?

MD* included a large set of activities which can be combined to compose a
concrete software development process. We think that the process and the
supporting tools could have an important role in determining the outcome of
MD* adoption. We therefore decided to investigate also this aspect.

20

2.2 – Study definition

RQ5: Which factors influence the maturity of modeling and MD*?

Which are the companies who employ more mature techniques? Are they large
or small? Are they part of a particular domain? What kind of teams they
employ?

Goal 3: motivations

RQ6: Which are the benefits expected from modeling and MD* adoption?

Expectations determine the choice of adopting technologies. We want to un-
derstand which are those expectations and if they are fullfilled or not.

RQ6.1: Which are the most expected benefits? We want to understand which
are the anticipated benefits that also represent plausible motivations for
adopting modeling and MD*.

RQ6.2: Which are the relations between expectations? We envision group of
related benefits, i.e., benefits that are supposed to be achieved together.

RQ6.3: Which are the effects of experience on forecasting? Practicioners with
more experience are better at forecasting the benefits of modeling?

RQ7: What are the benefits of using modelling and MD*?

From a technology transfer perspective it is important to motivate the adoption
of a new technique by presenting the benefits that it could bring. Therefore, we
are interested in understanding which specific technique (e.g., code generation)
increases the likelihood of a given benefit.

RQ7.1: Do individual MD* techniques affect the achievement ratio of specific
benefits?

RQ7.2: Which benefits are most common in each company size category?

RQ8: What issues hinder/prevent the adoption of modelling and MD*?

The reasons that hinder/prevent the adoption of modelling and MD* are as
important as the potential benefits. In some cases these motivations may
exclude such techniques from the whole company, in other cases the preclusion
may be on a per-project basis.

21

2 – Relevance, benefits and problems of modeling and DSL adoption

2.2.2 Population and sampling strategy

The first step to conduct a survey consists in defining a target population. In our
study the target population is formed by software development teams or business
units. To get information about the target population we defined a framing popu-
lation consisting of Italian software professionals – i.e., project managers, software
architects, developers – whom we asked to answer our questions (about the target
items).

To sample the population we applied both probabilistic (random sampling) and
non-probabilistic (convenience sampling) methods [Kitchenham and Pfleeger, 2008].
More in detail, the sampling was performed in five ways: (i) randomly selecting
contacts from the the Commerce Chamber database, (ii) selecting contacts from
the industrial contact networks of the two research units involved (Torino and Gen-
ova), (iii) sending invitation messages to mailing lists concerning programming and
software engineering, (iv) publishing an advertisement in an on-line magazine for
developers (programmazione.it) and, and (v) placing and advertisement on the web
portal of a large Italian developers’ conference (CodeMotion 2011).

We decided to collect data through an on-line questionnaire created by means of
the LimeSurvey survey tool3. Web-based questionnaires, compared to paper-based
questionnaires or email-based questionnaires, allow an easier data entry from the
respondent perspective, a simpler data collection from the researcher perspective
and are less error prone [Punter et al., 2003]. In general, it has been observed that
Web-based questionnaires guarantee high return rates [Jelitshka et al., 2007].

2.2.3 Survey Preparation and Execution

The procedure followed to prepare, administer, and collect the questionnaire data
is made up of the following five main steps.

Preparation and design of the questionnaire. We first prepared a preliminary
version of the questionnaire. Then, we conducted three different pilots with software
professionals to identify any problems with the questionnaire itself [Kitchenham and
Pfleeger, 2008], before putting on-line the final version. According to the feedback
obtained, we made a few changes to the questionnaire to improve the validity of the
instrument.

On-line deployment. Once finalized, the questionnaire was uploaded to the
LimeSurvey server to enable the automatic collection of data.

Invitation to participate. Organizations were sampled as detailed above (Section
2.2). For the contacts that we selected directly, once the contact persons were iden-
tified, we invited them, via email, to register with the survey server and to complete

3http://www.limesurvey.org/

22

2.2 – Study definition

the on-line questionnaire. We also broadcast invitation on selected mailing lists and
on-line magazines/conferences including in the message a link (“click here to take
the survey”) to a registration form where the participants could register themselves
and fill in the questionnaire. The questionnaire was introduced by a brief description
page summarizing goals and motivation of this study and it was accompanied by
a cover letter briefly introducing our research project. In the cover letter we tried
to summarize: the purpose of the study, the relevance to the participants and, why
each individual participation was important [Kitchenham and Pfleeger, 2008]. Great
care was taken to ensure that ethical requirements and privacy rules imposed by the
Italian regulations were met4. For example, they require confidentiality but give the
possibility of publishing the results in aggregated form. We decided to avoid any
form of material incentives for participation. However, to motivate professionals, we
promised to provide a report containing the analyses and the obtained results to all
participants.

Monitoring. During the data collection phase, we monitored the progress of the
questionnaire submission. This allowed us to send selective reminders to contacts
who did not respond or did not completed the questionnaire yet. Some people
reported some difficulties about the questions, either due of internal policies of the
company or because involved in very different projects with different companies at
the same time; they asked us some clarifications about the questions.

Data analysis and Packaging. After data collection was concluded, we performed
analyses as described in section 2.2.5 and we packaged instruments, data, and results
in a replication package.

2.2.4 Questionnaire Design

The questionnaire was developed to directly address the goals of the study. To
harvest as many responses as possible, we designed the questionnaire to limit as much
as possible the time necessary to complete it, having in mind that long questionnaires
get less response than short ones [Walonick, 1997]5.

The questionnaire contains a total of thirty-one items, both open and multiple-
choice expressed in Italian language. However, the actual number of items adminis-
tered to any individual respondent depends on her adoption of MD* and modelling
(e.g., respondents not adopting modelling in their software process were required to
answer eight questions only).

The structure and possible paths through the questionnaire are described in

4privacy Italian law: “D.lgs. n.196/2003”.
5It turned out the actual time for completing the questionnaire was on average less than six

minutes.

23

2 – Relevance, benefits and problems of modeling and DSL adoption

Sub02

Dev08

Mod14

Lan28

Lan25

Mod19a

Sub04 Sub03

Sub05, Dev06, Dev07

Dev09 Dev09

Dev10, Dev11,
Mod12a, Mod12b, Mod13

Mod15

Mod16, Mod17, Mod18

Mod19b

Mod20, .. Mod24

Lan27

Lan29b

Lan29a

Lan29b

Legal kind of the
firm?

Are models used?

Percentage of
code generated
from models?

Have editors of other
supporting tools been
developed?

Is UML used?

Are any Domain
Specific Languages
used?

[else]

[freelance or
Individual firm]

[Sometimes]

[Always]
[Never]

[>0]

[else]

[else]

[yes]

[yes]
[else]

[textual]

[textual/graphical]

[else]

Sub03

Lan26
[yes]

[else]

Lan29a

[graphical]

Figure 2.1. Questionnaire structure.

Figure 2.1. The questionnaire consists of four sections; each session is identified
by a three characters identifier (Sub, Dev, Mod, and Lan) and is described below.
The individual items are named using the section identifier followed by a two digits
progressive number (e.g., Sub04 is the fourth item in the questionnaire and appears
in the Sub section).

Sub (subject’s demographics): this is the first section and is administered to all
respondents; its goal is to characterize the respondents and their organiza-
tion. In particular, it collects: business domain, organization size, respon-
dent’s group/business unit size and experience of unit members. For example,
freelance or individual companies are asked only three distinct questions of
this kind (Sub02, Sub03 and Sub05), as we may observe from Figure 2.1.

Dev (development process): the second section collects information concerning the
kind of projects conducted, their average duration, whether the respondent
uses models, and the expected and achieved benefits. The respondents that
do not use modelling systematically (i.e., answering never or sometimes at
question Dev08) are asked about the problems preventing or limiting to use
models (see question Dev09 in Table 3.1 and Figure 2.1). Respondents never
using modelling terminate the questionnaire with this section.

Mod (modelling details): the items in this section are administered to respondents

24

2.2 – Study definition

that use modelling at least sometimes. The section collects information con-
cerning the adoption of processes, techniques and tools.

Lan (languages and notations): contains items measuring use of UML, UML profiles
and domain specific languages (DSLs).

Table 2.1 reports the items in the questionnaire. For each question the table
reports the identifier, the question (translated into English from Italian) and the
type of measure.The complete questionnaire (in Italian) is available for downloading
on the web6.

ID Question Type
Sub02 What legal entity/kind does your company fit?

Valid answers: Freelance/individual firm; Firm/company; Public institution; Other
Nominal

Sub03 What is the main business activity of your company?
Valid answers: [Manufacturing; IT; Public Administration; Service Provider; Transport; Telecom; Other]

Nominal

Sub04 How many persons does your company count, including part-time, full-time staff and consultants? Ordinal
Sub05 Provide the experience (in years) of the business unit’s members Interval

Dev06 What is the typical size of the development team? Preset intervals
Dev07 What is the typical effort in person-months per project? Interval
Dev08 Are models used for software development in your organization? (for model we mean both diagrams, e.g.,

UML, and text according to any DSL)
Valid answers: Always; Sometimes; Never

Nominal

Dev09 What are the problems preventing modelling and MD*? Nominal
DEV10 For which goals was decided to use modelling? Nominal
Dev11 What are the benefits expected and verified from using modelling and MD*? Nominal

Mod12a How many elements diagrams contain? Interval
Mod12b How many lines DSL utterances contain? Preset intervals
Mod13 Who write the models? Valid answers, not exclusive: Developers; Project managers; Business experts Nominal ?
Mod14 What is the percentage of code generated from models? Interval
Mod14* Is code generated? Derived measure: Mod14∗ = Mod14 > 0 Yes/No
Mod15 For which layes is code generated? Nominal
Mod16 Are models executed (interpreted) at run-time? Yes/No
Mod17 How many metamodels are typically used per project? Interval
Mod18 Are transformation languages (e.g., ATL) used? Yes/No
MD USAGE Derived from previous: MD USAGE ← (MOD14 > 0)|MOD16|MOD18 Yes/No
Mod19a Have modelling support tools and editors been developed? Yes/No
MD USAGE Is any MD* technique used?

Derived measure: MD USAGE = Mod14 ∗ ∨Mod16 ∨Mod18
Yes/No

Mod19b Using which technologies? Nominal
Mod20 Are versioning systems used? Yes/No
Mod21 How many years ago was modelling adopted? Ordinal
Mod22 In how many projects has modelling been used in the last 2 years? Percentage
Mod23 In how many projects has MD* been used in the last 2 years? Percentage
Mod24 How many years ago was MD* adopted? Ordinal
Lan25 Is UML used? Yes/No
Lan26 Are UML profiles used? Yes/No
Lan27 How many stereotypes are used in UML Profiles? Interval
Lan28 Are Domain Specific Languages used? Valid answers: No; Yes, textual; Yes, graphical; Yes, both graphical

and textual
Nominal

Lan29a How many node types are used in graphical DSLs? Preset interval
Lan29b How many constructs are used in textual DSLs? Preset interval

Table 2.1. Questionnaire items considered (translated from Italian to English).
Questions are condensed in respect to the administered survey.

A few items in the questionnaire are particularly important for the purpose of
this study and deserve more attention.

In section Dev, the most important item is Dev08 that corresponds to the follow-
ing question: “Are models used for software development in your organization?” By

6http://softeng.polito.it/tomassetti/MDQuestionnaire.pdf

25

2 – Relevance, benefits and problems of modeling and DSL adoption

model we mean both diagrams and text artefacts created using either general purpose
modelling languages (e.g., UML) or Domain Specific Languages (DSLs)7. Dev08 is
a closed question that allows three valid answers: always, sometimes and never. De-
pending on the Dev08 answer, three distinct paths were followed (see questionnaire
structure in Figure 2.1):

• respondents that always use modelling were asked about the benefits (Dev11),

• those using modelling only sometimes were asked about the benefits (Dev11)
and also about the problems preventing the use of modelling (Dev09), and

• respondents never using modelling were asked only about the potential prob-
lems (Dev09).

Given their importance, we evaluated accurately the possible answers presented
for questions Dev09 and Dev11 in the design phase of the questionnaire. Moreover,
we fine-tuned them based on the outcomes of the pilots. The values we chose are
reported in Figure 2.2.

Since we were not sure about the range of possible problems preventing the usage
of models and MD*, we designed item Dev09 as a multiple answers question with a
set of predefined options plus an additional open option.

Conversely, after the feedback from the pilots, we were confident we identified
all the significant benefits, therefore item Dev11 was designed as a closed answer
with multiple choices. The question Dev11 asks which benefits among the ones
presented were expected by the respondents and which ones were actually verified.
For each benefit the respondent had the possibility to mark separately if the benefit
was expected or verified. In this way four combinations are possible for each single
benefit: it could have been expected and verified (positive confirm), expected and
not verified (negative surprise), not expected and verified (positive surprise) or not
expected and not verified (negative confirm).

In the questionnaire there are three items concerning MD*-specific practices:
code generation (Mod14), model interpretation (Mod16), and model transformations
(Mod18). We plan to handle the three practice categories in an homogeneous way;
since Mod14 measures the percentage of code generated from models, while the
other two (Mod16 and Mod18) just measure the adoption as a boolean value, we
introduced a derived variable (Mod14*) with boolean type whose value is true when
some code is generated and false otherwise, i.e., Mod14∗ = Mod14 > 0.

We assume that using at least one of the three techniques means adopting MD*,
therefore, we defined a derived item (MOD USAGE see Table 3.1) that is defined

7This was clarified in the questionnaire given to the participants.

26

2.2 – Study definition

[Dev09] What are the problems hindering or
preventing modeling and MD* (if any)?

Choose one or more
Too much effort required
Not useful enough
Lack of competencies
Lack of supporting tools
Refusal from management
Cost of supporting tools
Refusal from developers
Fear of lock-in
Not flexible enough
Inadequacy of supporting tools
Other:

[Dev11] What are the benefits expected and
verified as consequence of using modeling?

Choose one or more
Expected Verified

Design support
Improved documentation
Improved development flexibility
Improved productivity
Quality of the software
Maintenance support
Platform independence
Standardization
Shortened reaction time to changes

Figure 2.2. Options presented in questions Dev09 and Dev11.

on the basis of the three technique oriented items, i.e., MD USAGE = Mod14∗ ∨
Mod16 ∨Mod18.

2.2.5 Analysis methodology

We address the three research questions delineated in Section 2.2.1 by means of
descriptive statistics and where applicable by statistical hypothesis testing, and
show our findings by means of graphs.

Statistical correlation between a factor (e.g., using UML profiles) and the benefit
achievement ratio (the proportion of respondents who achieved each specific benefit)
are verified by means of standard tests. In particular, we opted for non-parametric
tests because of the nature of the variables, which are measured on nominal and
ordinal scales. Specifically, according to the recommendations given in [Agresti,
2007, Motulsky, 2010], we used:

• the Fisher exact test for the correlation among two dichotomous variables,

• the χ2 test for the correlation among categorical variable variables,

• the Mann-Whitney tests for testing the difference between two groups (we can
interpret a significant MW test as showing a difference in medians), and

• the Kruskal-Wallis test for three or more groups.

The decision whether rejecting or not the null hypotheses verified by statistical
tests is taken considering a level of significance of 95%. This means that when we

27

2 – Relevance, benefits and problems of modeling and DSL adoption

draw our conclusions, we accept a probability (α = 5%) of incurring in a type I error
(i.e., rejecting a null hypothesis when it is true).

We present now the method used to specifically address each research question.

RQ1: diffusion and relevance

We answer RQ1 by looking at one dependent variable: the answers to the item about
model usage (Dev08). In particular, we focus on the frequency of the three valid
answers (Never, Sometimes, and Always). The analysis of both this RQ and the
following ones, will focus on the “modellers”, with this term hereinafter we refer to
the respondents who use modelling at least sometimes: that is those who answered
Sometimes or Always to item Dev08.

In agreement with the definition of relevance provided in [Hjørland and Se-
jer Christensen, 2002], we can state that the study of a specific software devel-
opment technology is relevant to software engineering if it increases the likelihood of
improving software development practices. Such a perspective involves both tech-
nical aspects, which are out of the scope of our investigation, and process aspects
which are in part addressed in our investigation. With a little bit of simplification
we assume here that the main process factor for evaluating the diffusion of a tech-
nology is the proportion of developers that use it. In the context of this study, we
assume a proportion larger than 50% implies a high relevance, larger than 25% a
normal relevance, larger than 10% a limited relevance, and below 10% irrelevance.
We defined the above thresholds in an arbitrary way using just common sense.

We compute the relevance level (high, normal, limited, irrelevant) for modelling
by comparing the above thresholds to the confidence intervals for the proportions. In
particular, we compute the 95% confidence interval (CI) by means of the proportions
test [Agresti, 2007]. Then, to be conservative as much as possible, we assign the
level corresponding the highest threshold that is smaller than the lower limit of
the confidence interval. For instance if the 95% CI of the diffusion of a technology
is [35% , 65%] we assign the “normal relevance” category since the corresponding
threshold (25%) is the highest one smaller than the lower limit (35%).

Then, we analyse the relevance and diffusion indicators with respect to the com-
pany size (Sub04). In particular, we check for the existence of a correlation between
the adoption ratio of modelling and the company size categories. To this end, we
build a 2 × 5 contingency table of modelling adoption (sometimes or always) vsṅo
modelling on one side and company size categories on the other side (we considered
five company size categories, see Table 2.2). We apply the χ2 test to reject the null
hypothesis that no correlation exists. In addition we evaluate the relevance for each
company size category

Moreover, we focus on the adoption of the MD* specific practices: code genera-
tion (Mod14*), model interpretation (Mod16), and model transformations (Mod18).

28

2.2 – Study definition

In particular, we assume that respondents using at least one of the above cited tech-
niques is adopting MD*.

For both the general MD* adoption and each specific technique we perform the
same analyses as above: first we classify the relevance and then we analyze it in
relation to company size.

RQ2: experience in modelling and MD*

Four items in the questionnaire are devoted to the experience dimension (see Table
I). They capture information regarding modelling and MD* employees experience
measured in years (staff experience) and percentage of projects where modelling and
MD* are adopted respectively (organization experience).

We therefore simply considered years of experience in basic modeling and MD*

RQ3: languages and notations used

We considrered how many professionals use UML, with or without profiles and how
many use DSLs, differentiation between textual and graphical.

RQ4: processes and tools used

We examined which role perform the modeling, which MD* techniques are used
among: model-interpretation, code-generation, model-to-model transformation. We
also verified who developed their own tools and who use versioning for models.

RQ5: factors influencing maturity

We used as categorical criteria (i) company size and (ii) years of experience in mod-
eling. We observed if these criteria affected positively some selected indicators of
maturity: Mod14* (Code generation), Mod16 (Model execution), Mod18 (Transfor-
mations), Mod19a (Specialized editors) and Mod20 (Versioning).

We represented the effects of these criterias on these factors by means of polar
charts.

RQ6: benefits expected

RQ6.1: to answer this RQ we simply ranked the benefits by the number of respon-
dents expecting that benefit in descending order. In addition, using the proportion
test, we compute the estimate proportion of respondents who expect the benefit and
the corresponding 95% confidence interval. The interval is useful to understand the
precision of the result.

29

2 – Relevance, benefits and problems of modeling and DSL adoption

RQ6.2: we looked at the relations between all possible pairs of benefits. We
calculated the Kendall rank correlation coefficient between the expectations of each
pair of benefits, obtaining a symmetrical measure of the strength of association
between the expectations of the two benefits. Positive values represent a positive
association while negative values represent a negative association. The absolute
value of the correlation represent the strength of the association and it can vary
from zero to one.

RQ7: benefits achieved

Question RQ7 is addressed by analysing the answers to a composite item (Dev11)
which listed several potential benefits and asked which were expected and which
were achieved (see Figure 2.2). For this question we focus on the actually achieved
advantages. In particular we adopt as metric the benefit achievement ratio: the
proportion of respondents who achieved each specific benefit.

As a preliminary step, we investigate the cross correlation among the different
benefits, since the adoption is a dichotomous variable, we selected the Pearson’s φ
as a strength of correlation measure. The statistical significance of the correlation
is verified by means of the Fisher exact test.

We first report the benefit achievement ratio among all modellers, with the inten-
tion of classifying the benefits in terms of their likelihood. In particular we assume
that above a 50% frequency a benefit can be considered as Very Likely, above 25%
as Likely, above 10% as simply Probable, and below that threshold as Unlikely. As
for the relevance categories of RQ1, we compute the 95% confidence interval of
the proportion using a proportion test and compare the lower limit with the above
thresholds.

Then, we report the proportion of respondents who achieved each specific benefit
making a distinction between adopters of simple modelling and adopters of MD*.
We investigate whether a significant difference in benefit achievement ratio between
the two groups exists and for any such case we will perform a further classification
of the relative likelihood. For the purpose of identifying the difference we observe
the odds ratio8 of benefits achievement for the two groups and test the significance
by means of the Fisher exact test.

8The odds ratio is a measure of effect size that can be used for dichotomous categorical data. An
odds indicates how likely it is that an event will occur as opposed to it not occurring. Odds ratio
is defined as the ratio of the odds of an event occurring in one group to the odds of it occurring
in another group. An odds ratio of 1 indicates that the condition or event under study is equally
likely in both groups. An odds ratio greater than 1 indicates that the condition or event is more
likely in the first group. Finally, an odds ratio less than 1 indicates that the condition or event is
less likely in the first group.

30

2.3 – Findings about relevance of modelling and MD*

After that, we focus on the three key MD* techniques (i.e., code generation,
model transformation and model interpretation). In particular, we check whether
the adoption of a single technique induces a significant difference in terms of benefit
achievement ratio. As for the previous step, we focus on odds ratios and we use the
Fisher exact test to identify significant differences.

Then, we check for the existence of a correlation between the achievement ratio of
each individual benefit and the company size categories. Similarly to the procedure
adopted for RQ1, for each benefit, we build a 2 × 5 contingency table of achievement
vs. not achievement of a benefit on one side and company size categories on the other
side. We apply the χ2 test to reject the null hypothesis that no correlation exists.

Eventually, as a last step concerning RQ7.1, we observe the relationship between
benefit achievement and other factors, namely toolsmithing, adoption of UML, UML
profiles, and DSLs. In particular we observe how the odds of achieving a benefit
change when each individual technique is employed. The Fisher exact test is used
to test the null hypothesis that no significance difference exists.

RQ8: problems

To answer RQ8, we consider the composite item Dev09 which reports for each par-
ticipant a list of problems (s)he found prevented her/him from adopt modelling (see
Figure 2.2). The respondents to this item include those who never use modelling
and those who use it sometimes: for the former the problems prevent altogether
modelling, while for the latter the problems just curb it.

We adopt a similar approach as for RQ7, therefore we first verify cross correlation
among problems, then we report the problem occurrence ratio among modellers, with
the intention of classifying them in terms of relevance. For this purpose we adopt
the same criteria used in RQ1.

In analogy with the procedure adopted for RQ7, we eventually divide the re-
spondents into two groups – those who never adopted modelling and those who
used it sometimes – and we analyse the problems considering their relationship with
company size.

2.3 Findings about relevance of modelling and

MD*

In this section we first describe the sample (Sect. 2.3.1), then we present findings
relative to RQ1: relevance and diffusion (Sect. 2.3.2), and RQ2: experience level
(Sect. 2.3.3).

31

2 – Relevance, benefits and problems of modeling and DSL adoption

2.3.1 The sample

The survey was put on-line from the 1st of February 2011 until the 15th of April
2011 (two and a half months).

In total, we collected 155 complete responses to our survey, thus the context of
our survey consists of a sample of 155 Italian software professionals. Due to the
sampling methods used, it is not possible to estimate how many people have been
reached by our invitation messages and/or advertisements; as a consequence it is
not possible to compute the response rate. This limitation appears to be a common
problem for large scale online surveys (see, e.g., [Lethbridge, 1998]).

The most of the companies where the respondents work are in the IT domain
(104), then come services (15) and telecommunications (11). The distribution of the
companies size where the respondents work is presented in Figure 2.3.

1 2−5 6−10 11−30 31−50 51−250 251 +

0
20

40
60

80
10

0

24

10

15

20

6

26

54

Figure 2.3. Size of respondents’ companies

Among the respondents, on the basis of item Dev08 we were able to identify 105
respondents using modeling and/or MD* techniques.

Interval Group Frequency
1 Individual 24
2-10 Micro 25
11-50 Small 26
51-250 Medium 26
251+ Large 54

Table 2.2. Frequency of respondents for different company sizes.

As far as the type of company is concerned, most respondents in our sample – 122
out of 155 (78.71%) – work in commercial companies; there are also 24 independent
professionals (15.48%), six from public organizations (3.87%) and three from other

32

2.3 – Findings about relevance of modelling and MD*

Individual Micro Small Medium Large All

Never
Sometimes
Always

Company size

P
ro

po
rt

io
n

of
 c

om
pa

ni
es

0.0

0.2

0.4

0.6

0.8

1.0

●

●

●

●
●

●

10%

25%

50%

33%
52% 46%

23% 20%
32%

58% 32%

50%

58%
65%

55%

8%
16%

4%

19% 15% 13%

Figure 2.4. Proportion of modeling usage per company size.

organizations. Concerning the domain, the most represented sector is obviously
IT (67%) followed by Services (9%), Telecommunications (6%) and Manufacturing
(4%); the remaining sectors all together account for circa 14% of the sample.

The respondents to our survey belong to companies of different size; the de-
tailed distribution for each category class is reported in Table 2.2. We adopted the
headcount classes defined in the European Union recommendation 2003/361/EC9

It is important to emphasize that in our sample the correspondence between
respondents and companies is not strictly one-to-one. In some cases we had more
than one response from employees of the same company: in such cases we verified
that they worked in distinct business units. This is obvious when consider that the
target population consists of development teams and companies, especially the large
ones, typically host several business units and work groups, each possibly working
in different settings.

2.3.2 RQ1: relevance and diffusion

We first consider relevance of modelling in general, then we summarize languages
and notations used by our sample. Finally, we examine the diffusion of each specific
MD* techniques.

9http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?\uri=OJ:L:2003:124:0036:

0041:EN:PDF

33

http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?\uri=OJ:L:2003:124:0036:0041:EN:PDF
http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?\uri=OJ:L:2003:124:0036:0041:EN:PDF

2 – Relevance, benefits and problems of modeling and DSL adoption

All

Large

Medium

Small

Micro

Individual

Any MD* Technique

48%

51%

50%

14%

67%

50%

20% 40% 60% 80%

C
om

pa
ny

 s
ize

●

●

●

●

●

●

Code Generation

44%

47%

40%

14%

67%

50%

20% 40% 60% 80%

●

●

●

●

●

●

Model Interpretation

16%

14%

15%

7%

50%

6%

20% 40% 60% 80%

●

●

●

●

●

●

Model Transformation

10%

12%

5%

0%

42%

0%

20% 40% 60% 80%

●

●

●

●

●

●

Figure 2.5. Diffusion of MD* techniques among modellers per company size.

Relevance of modelling in general

Among the 155 complete questionnaires, we recorded 20 respondents (13%) always
using modeling, 85 (55%) using it sometimes, and 50 (32%) who never use it. The
first two groups represent what we called ”modellers”. These figures are reported
in the rightmost bar of Figure 2.4. The circle represents the estimate proportion
of modellers in the sample (68%) and the whiskers represents the 95% confidence
interval (CI) of the same proportion.

We can classify the relevance of modelling by comparing such CI with the thresh-
olds defined in Section 2.2.5 (50%, 25%, and 10%), which are represented by the
horizontal dashed lines. The 95% CI of the proportion of modellers is [60%, 75%], the
lower bound is larger than the 50% threshold, therefore modeling can be classified
as a highly relevant technology. We can get to the same classification by graphically
comparing the lower end of the CI with the reference dashed lines: the whiskers lie
completely above the 50% reference.

The proportion of developers adopting modelling varies significantly (χ2 test p
= 0.02) with the size of company as we can appreciate also in Figure 2.4. According
to the 95% CI we can still classify modeling as highly relevant for medium and large
companies, while it can be considered as simply relevant for the other companies.

We observe that, with the exception of ”individual” companies, the use of mod-
elling (i.e., always + sometimes) is positively correlated with the size of companies
(i.e., it is more frequent in large companies). Individual companies represent an
exception to that trend since they are closer to large companies’ levels. Concerning
the systematic use of modelling (i.e., always), we observe a similar diffusion at micro,
medium, and large companies; while apparently there are few small-sized companies

34

2.3 – Findings about relevance of modelling and MD*

and individuals that systematically adopt modelling practices.

Languages and notations

Among the 105 modellers, 80 of them (76%) adopt UML as modelling language
(Lan25). Among them (Lan26), 11% use also UML profiles, 51% do no use them,
and the remaining 38% state to not know if them are used in their organization.

In our sample, only 21% of modellers appear interested in Domain Specific Lan-
guages (Lan28). Among them 50% use a purely textual notation, 23% a purely
graphical one, and 27% a mix of textual and graphical notations.

Relevance of MD* specific techniques

Among the 105 respondents that use modelling, 50 of them (48%) adopt at least
one of the three key MD* techniques. The 95% CI of the proportion of developers
among using MD* is [25% , 40%] of all developers, therefore we can classify MD*
as a relevant development technology.

The relative frequency of adoption of the MD* specific practices among modellers
is depicted in Figure 2.5. Overall, we observe that, in our sample, code generation
is in use by 44% of the 105 modellers, model interpretation by 16%, and model
transformation by 10% (not in exclusive way). The 95% CI of the frequency of the
use of the individual techniques by all developers are [34% , 54%] for code generation,
[10% , 25%] for model interpretation, and [6% , 18%] for model transformation. We
can compare them to the relevance thresholds defined in section 2.2.5. Therefore
code generation can be classified as a relevant technology, model interpretation as
a technology with limited relevance, while the diffusion of model transformation is
not enough to consider it relevant for the practitioners.

If we narrow down our scope to MD* adopters, only, 46 out of 50 MD* adopters
(92%) use code generation, 34% use model interpretation, and 20% use model trans-
formation.

2.3.3 RQ2: experience level

We differentiate between staff general experience and organization experience with
modeling and MD*.

Staff experience: 40% of users using modelling in our sample have an experi-
ence in the range (2,5] years and 30% in the range (5,10] (Mod21). The experience
in MD* is lower: 65% among modellers have no experience at all and 20% have 2
years or less of experience (Mod24). Figure 2.6 (middle) shows the complete distri-
butions for experience in modelling and MD*. The experience in modelling appears
to be distributed according to a normal distribution centred around the interval of

35

2 – Relevance, benefits and problems of modeling and DSL adoption

(2,5] years of experience. Instead, the experience in MD* has a distribution strongly
skewed towards the zero.

Organization experience: The teams of our sample use modelling in 44% of
the projects on average (Mod22)10. Adopters of modelling use MD* in 39% of the
projects on average (Mod23). In both cases the time-frame considered is the last
two years. Both modelling and MD* are used in more projects as the experience
of the respondents in the field grows (see Figure 2.6, up for modelling and down
for MD*). For example, see Figure 2.6 (up), modellers with an experience in the
range (0,2] years adopt modelling only in the 20% of the projects (median) while
modellers with more than 10 years of experience adopt it in the 80% of the projects
(median).

The correlations between years of experience and proportion of projects adopt-
ing modelling and MD* respectively are statistically significant. In both cases the
Kruskal-Wallis test returned a p-value < 0.001.

10The values were calculated considering only users with more than zero years of experience
respectively in modeling and MD*

36

2.3 – Findings about relevance of modelling and MD*

Figure 2.6. Staff (middle) and Organization experience (up and down) in
modelling and MD*

37

2 – Relevance, benefits and problems of modeling and DSL adoption

M
D

*
v
s.

C
o
d

e
M

o
d

el
M

o
d

el
A

ch
iev

em
en

t
ra

tio
B

a
sic

m
o
d

elin
g

g
en

era
tio

n
in

terp
reta

tio
n

tra
n

sfo
rm

a
tio

n
B

en
efi

t
F

req
.

E
stim

a
te

9
5
%

C
I

L
ik

elih
o
o
d

O
R

p
O

R
p

O
R

p
O

R
p

D
esig

n
7
1

6
8
%

5
8
%

..
7
6
%

V
ery

lik
ely

1
.2

3
0
.6

8
1
.0

1
.0

0
2
.5

0
.2

6
1
.3

1
.0

0
D

o
cu

m
en

ta
tio

n
6
5

6
2
%

5
2
%

..
7
1
%

V
ery

lik
ely

0
.6

2
0
.3

1
0
.6

0
.2

2
0
.9

0
.7

9
0
.5

0
.3

3

M
a
in

ten
a
n

ce
4
3

4
1
%

3
2
%

..
5
1
%

L
ik

ely
1
.4

9
0
.3

3
1
.2

0
.6

9
1
.8

0
.2

9
2
.8

0
.1

2
Q

u
a
lity

4
2

4
0
%

3
1
%

..
5
0
%

L
ik

ely
2
.2

2
0
.0

7
1
.8

0
.1

6
1
.9

0
.2

8
2
.9

0
.1

1
S

ta
n

d
a
rd

iza
tio

n
3
9

3
7
%

2
8
%

..
4
7
%

L
ik

ely
2
.4

4
0
.0

4
2
.2

0
.0

7
1
.6

0
.4

2
1
.5

0
.5

3

F
lex

ib
ility

2
4

2
3
%

1
5
%

..
3
2
%

P
o
ssib

le
2
.1

7
0
.1

1
1
.4

0
.4

9
3
.9

0
.0

2
2
.1

0
.2

7
P

ro
d

u
ctiv

ity
2
3

2
2
%

1
5
%

..
3
1
%

P
o
ssib

le
5
.5

3
<

0
.0

1
3
.9

0
.0

1
4
.2

0
.0

1
8
.3

<
0
.0

1
R

ea
ctiv

ity
2
0

1
9
%

1
2
%

..
2
8
%

P
o
ssib

le
1
.8

4
0
.3

2
1
.1

1
.0

0
4
.0

0
.0

2
2
.7

0
.2

1
to

ch
a
n

g
es

P
la

tfo
rm

in
d

ep
en

d
en

ce
1
5

1
4
%

8
%

..
2
3
%

U
n

lik
ely

5
.3

9
0
.0

1
3
.0

0
.0

9
4
.7

0
.0

2
4
.2

0
.0

5

T
a
b

le
2.3.

B
en

efi
ts

a
ch

ieved
b
y

m
o
d

ellin
g

u
sers

(O
R

=
O

d
d

s
R

atio,
p

=
F

ish
er

test
p

-valu
e).

38

2.3 – Findings about relevance of modelling and MD*

Toolsmithing UML UML Profile DSL
Benefit OR p.value OR p.value OR p.value OR p.value
Design 1.2 1.00 2.4 0.09 4.1 0.25 1.3 0.62

Documentation 0.5 0.18 2.6 0.06 1.1 1.00 0.9 0.81

Maintenance 2.4 0.11 2.1 0.16 1.9 0.46 1.0 1.00
Quality 1.9 0.28 1.2 0.82 1.1 1.00 1.3 0.63

Standardization 3.9 0.01 1.7 0.35 4.7 0.05 0.7 0.63

Flexibility 3.9 0.02 0.9 1.00 1.0 1.00 3.1 0.04
Productivity 4.2 0.01 1.2 1.00 1.2 1.00 3.4 0.02

Reactivity to changes 5.5 < 0.01 0.9 1.00 1.0 1.00 2.5 0.12

Platform independence 9.9 < 0.01 0.8 0.75 3.5 0.22 4.3 0.01

Table 2.4. Effects of additional factors on benefit achievement rate.

39

2 – Relevance, benefits and problems of modeling and DSL adoption

2.4 Findings about how software modelling and

MD* are applied

In this section we present the findings related to RQ3: languages and notations
(Sect. 2.4.1), RQ4: processes and tools (Sect. 2.4.2), and RQ5: factors affecting
maturity (Sect. 2.4.3).

2.4.1 RQ3: languages and notations

We found that 76% of professionals (80 out of 105) creating models use UML; among
them 11% use also UML profiles, 51% do no use them, and the remaining 38% state
to not know if them are used in their organization.

In our sample, only 21% of professionals using models appear interested in Do-
main Specific Languages (DSLs). Among them 50% use a purely textual notation,
23% a purely graphical one, and 27% a mix of textual and graphical notations.
Results are shown in Fig. 2.7.

No DSL Text Graphical Mixed

0.
0

0.
2

0.
4

0.
6

0.
8 79%

10%

5% 6%

Figure 2.7. Usage and type of DSLs.

2.4.2 RQ4: processes and tools

As far as processes are concerned, we investigated which role typically performs the
modelling. Usually modelling is performed by multiple roles at the same time. For
this reason, to the corresponding question in the questionnaire several answers were
permitted (e.g., developer and project manager). Figure 2.8 shows that architects
or project managers perform modelling in 76% of the cases, developers write models
in 72% of the cases, while domain experts are involved in just 11% of the cases.

As far as model manipulations, it appears the only 10% of modelers perform
automatic transformations between models. While 16% of the modelers developed

40

2.4 – Findings about how software modelling and MD* are applied

editors or other support tools for models. Since models can evolve, 53% of the
modelers adopt versioning of models.

Typically modeling is performed by multiple roles at the same time; table 2.5
breaks down the combination of different roles. We observe that when experts are
involved (top two data rows) they consistently cooperate with high profile roles (Ar-
chitects or PMs). While when experts are not involved, half of the times developers
and architects operate together and half of the times they work alone.

Developer
Architect Yes No

Expert
Yes 6 6
No 0 0

No Expert
Yes 45 23
No 25 -

Table 2.5. Roles performing modeling

Developer Architect/PM Expert

0.
0

0.
2

0.
4

0.
6

0.
8

72%
76%

11%

Figure 2.8. Which role writes the models.

When we focus on the adoption of (any) MD* specific techniques as a function of
the company size we observe a sort of bimodal distribution. A very large proportion
(67%) of the micro companies adopt MD* techniques, medium and large companies
have an adoption ratio of circa 50%. This trend is completed by a sudden drop in
adoption for small companies where just 14% adopt such techniques (see Figure 2.5
leftmost plot).

Considering each technique alone, we observe a similar shape for the distribution
but with some notable differences. The adoption of code generation is very similar
to the adoption of MD* techniques: this is obvious since it is by far the most
widespread among the three techniques. As far as model interpretation and model
transformation are concerned, micro companies are the only significant adopter,
large companies adopt them very marginally and still small sized companies exhibit
little or no interest in them.

The above picture can be drawn considering the adoption of the techniques as

41

2 – Relevance, benefits and problems of modeling and DSL adoption

separate; in practice specific techniques are adopted both individually (2/3 of the
cases) and in combination with each other (1/3 of the cases).

Code
Generation # # # #

Model
Interpretation # # # #

Model
Transformation # # # #

Freq
55 30 3 0 6 3 1 7

52% 28% 3% 0% 6% 3% 1% 7%

Table 2.6. Combined diffusion of MD* techniques (: technique used,
#: technique not used).

Table 2.6 reports the relative frequency of the different combination of tech-
niques (indicated in the table with black circles) that were found in use among the
respondents. We observe that the most common toolbox consists of code genera-
tion alone (28% of modelers), the next most frequent sets are the combination all
the three techniques (7%) and the use of code generation together with code model
interpretation (6%). The other options are adopted by a few respondents. Notably,
model transformation techniques are never used alone but only together with other
techniques (that is pretty obvious).

2.4.3 RQ5: factors affecting maturity

Among the indicators we analysed above (see Table 3.1), we identified a subset of
them to be further investigated, having in mind the goal of observing how different
types of companies score in terms of maturity. As categorization criteria, we used:
(i) company size and (ii) years of experience in modelling.

We decided to consider only boolean indicators (Yes/No answers) since they
enable an immediate quantification of the maturity level of a group of companies: the
percentage of companies having a positive indicator provides a measure of maturity
in that group. Conversely, we discarded, for this analysis, the indicators measured
with interval, nominal and ordinal metrics. For the interval metrics it is difficult to
define one or more thresholds to assess the maturity level, e.g., is 42% of average
code generated low or high? The same reasons hold, all the more so, for ordinal and
nominal metrics.

Finally, the selected indicators are: Mod14∗ (CodeGeneration), Mod16 (Mod-
elExecution), Mod18 (Transformations), Mod19a (Specialized editors), and Mod20
(Versioning).

As a tool to analyse the maturity from those five perspectives at once, we used
polar charts. We recall that each line in a polar-chart represents a quantitative

42

2.4 – Findings about how software modelling and MD* are applied

synthesis of maturity. It was calculated as the mean of the values for that indicator
between the respondents of a given group.

Figure 2.9 (left) shows the maturity along the five dimensions for companies
grouped into different ranges of size, each size category corresponding to a different
line style. By looking at the enclosed areas, micro companies (10 employees or less)
appear to use a more mature approach in MD* than larger companies (indeed the
area is bigger). The percentage of companies adopting code generation varies sig-
nificantly as the size of company: micro companies and large companies, the latter
to a lesser extent, adopt code generation more often than small and medium com-
panies. The same applies to model transformations. In terms of model execution
and specialized editors, micro companies perform better than the larger-sized com-
panies. Finally, in terms of model versioning large companies adopt it slightly more
than micro companies, while small and medium sized companies embrace it half as
frequently.

Figure 2.9 (right) shows the five indicators based on the experience in modelling.
The picture here, is less clear cut. Companies in the (5-10] range adopt slightly
more often model transformations and execution and more often code generation
than companies in the 10+ range; while the latter developed more often specialized
editors. Companies with shorter experience adopt such techniques less often. Fi-
nally, we observe a natural evolution, as experience grows, from a reduced adoption
of versioning up towards more diffuse adoption.

43

2 – Relevance, benefits and problems of modeling and DSL adoption

Maturity by company size

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Micro
Small
Medium
Large

Specialized editors

Versioning

Code generation

Model execution

Transformations

Maturity by experience

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

[0,2] ys
(2,5) ys
[5,10) ys
[10+ ys

Specialized editors

Versioning

Code generation

Model execution

Transformations

Figure 2.9. Maturity with respect to company size (left) and experience
in modelling (right)

2.5 Findings about benefits and problems

In this section we present findings relatives to RQ6 (Sect. 2.5.1), RQ7 (Sect. 2.5.2),
and RQ8 (Sect. 2.5.3).

2.5.1 RQ6: benefits expectations

In this section we present results about benefits expectations. We first report how
frequently the different benefits were expected, then how these relations where ex-
pected, i.e. which group of benefits were commonly expected to be achieved together
and finally the effects of experience on forecasting.

RQ6.1: Which are the benefits expected from modeling adoption?

In Table 2.7 we report for each benefit the frequency of expectation (column Freq.)
and the corresponding percentage of respondents (column Estimate).

Improved documentation is the most expected benefit, with almost 4 out of 5

44

2.5 – Findings about benefits and problems

Platform
independence

Reactivity
to changes

Productivity

Improved flexibility

Standardization

Quality of the
product

Maintenance
support

Documentation
improvement

Design support

0.0 0.2 0.4 0.6 0.8

Adopters of:

MD* techniques
Basic modeling

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

5%

15%

9%

16%

27%

31%

36%

67%

65%

24%

24%

36%

30%

48%

50%

46%

56%

70%

●

●

●

0.0 0.2 0.4 0.6 0.8

Adopters of:

Model transformation
Model interpretation
Code Generation

22%

20%

35%

26%

48%

48%

43%

54%

67%

35%

41%

47%

47%

47%

53%

53%

59%

82%

36%

36%

64%

36%

45%

64%

64%

45%

73%

●

●

●

●

●

●

●

Figure 2.10. Benefits achieved. By “Basic modelling” we mean use of
models not resorting on any MD* technique. Circles indicated statistically
significant difference.

respondents anticipating it. Also Design support, Quality of the software, Mainte-
nance support, and Standardization are frequently expected. For all of the top 5
benefits we are 95% sure that more than 50% of modeling adopters expect them: in
fact the confidence interval (C.I.) lower bounds are larger than 50%. The remaining
benefits, Improved development flexibility, Improved productivity, Shortened reac-
tion time to changes, and Platform independence are less popular, with the latter
typically expected by less than 40% of respondents.

RQ6.2: Which are the relations between expectations?

We report the statistically significant relations among benefits in the graph shown
in Figure 2.11: the nodes represent the individual benefits, the edges represent
a statistically significant relation which is reported as edge label. The layout of
the nodes is computed considering the Kendall rank correlation coefficient (KC)
(the length of the edge should be as much as possible inversely proportional to the

45

2 – Relevance, benefits and problems of modeling and DSL adoption

Table 2.7. Frequency of expectations
Proportion Fulfillment

Benefit Freq. Estimate 95% C.I. Rate

Improved documentation 81 77% (68% , 85%) 68%

Design support 77 73% (64% , 81%) 78%

Quality of the software 75 71% (62% , 80%) 49%

Maintenance support 66 63% (53% , 72%) 52%

Standardization 64 61% (51% , 70%) 52%

Improved development flexibility 51 49% (39% , 58%) 45%

Improved productivity 42 40% (31% , 50%) 45%

Shorter reaction time to changes 41 39% (30% , 49%) 37%

Platform independence 32 30% (22% , 40%) 34%

Kendall distance) and additional constraints to improve the readability avoiding the
overlaps of nodes and labels.

The benefit expected together (KC > 0) are linked by continuous black lines,
while the benefits whose expectations tend to exclude each other (KC < 0) are
linked by dashed red lines, with circles at the ends.

All the significant relations were positive except one, that between Improved
documentation and Improved development flexibility : who expects one of these two
benefits tend to not expect the other one.

By observing Figure 2.11, we can note two distinct clusters: the first includes
Improved documentation, Design support and Maintenance support. The second one
includes Improved development flexibility, Shorter reaction time to changes, Platform
independence, Standardization and Improved productivity. Quality of the software
appears to be a transversal benefit, connecting the two clusters.

The two cluster contain three maximal cliques11: the smallest (left side) cluster
correspond to a three-vertexes maximal clique, while the largest one (right side) cor-
respond to a four-vertexes and a three-vertexes cliques that share a node (Reactivity
to changes).

RQ6.3: Does experience in modeling improves accuracy of benefits
achievement forecasts?

The low experienced practitioners group (< 5 years of experience in modeling) is
constituted by 50 persons, whereas the high experienced practitioners group (i.e., ≥
5 years of experience in modeling) by 55. Thus, the two groups are balanced.

Applying the Fisher test to the built contingency table, even adopting a looser
threshold of 0.1, it is not possible to find any statistically significant difference.

11From Wikipedia: in the mathematical area of graph theory, a clique in an undirected graph is
a subset of its vertices such that every two vertices in the subset are connected by an edge.

46

2.5 – Findings about benefits and problems

Improved
documentation

Design support

0.34Maintenance
support

0.43

Flexibility

-0.2

0.25

Quality of the
software

0.24

Reactivity
to changes

0.2

Productivity

0.22

Standardization

0.270.67

Platform
independence

0.35

0.33

0.36

0.26

0.2

0.22

0.23

Figure 2.11. Relations among benefits expectations.

Therefore, we conclude that experience does not improve the precision in forecasting
the obtainable benefits.

2.5.2 RQ7: benefits achievement

This research question concerns how often the verification of a benefit met the
expectation. It is measured as the frequency of verified benefit given the benefit was
expected. Results are reported in the rightmost column of Table 2.7 (Fulfillment
rate).

Design support has the highest fulfilment rate: 60 respondents out of the 81 who
reported to expect it (i.e., 78%) actually achieved the benefit. Also Documentation
improvement is consistently verified when expected, the same is not true for all the
other benefits. Standardization and Maintenance support are just above the parity
(it means are slightly mainly achieved than not achieved, when expected) and all
the others are more often not achieved than achieved. Platform independence and
Reactivity to changes have a really low fulfilment rate, representing very often a
delusion for practitioners.

Cross-correlations among benefits achievements

Table 2.9 (in appendix) reports the correlation (in terms of Pearson’s φ) among the
different benefit achievements; in bold the statistically significant correlations. We
observed one strong correlation (between Flexibility and Reactivity to changes), 11
moderate correlations, 18 small, and 6 negligible. The strong correlation is a clue
indicating a possible common shared underlying construct, as discussed later in the
Threats to validity section.

47

2 – Relevance, benefits and problems of modeling and DSL adoption

Not flexibile
enough

Fear of
lock−in

Cost of
supporting tools

Inadequacy of
supporting tools

Refusal from
developers

Lack of
supporting tools

Refusal from
management

Lack of
competencies

Not useful
enough

Too much
effort required

0.0 0.1 0.2 0.3 0.4 0.5 0.6

Used models:

never
some

8%

11%

12%

14%

18%

14%

27%

31%

48%

52%

6%

8%

8%

4%

8%

22%

20%

40%

46%

46%

Figure 2.12. Prevalence of problems limiting adoption of modeling.

Factors affecting benefits achievement

After looking at which benefits are concretely achieved by using models, we look
into the factors affecting the verification of those benefits: basic modelling vs. MD*,
individual key MD* techniques, and additional co-factors.

Overall Table 2.3 (in the first six columns) reports the frequency of achieved
advantages among the 105 modelling users. The table also reports the estimated
benefit achievement ratio and the relative 95% CI, as percentages. The benefits
are sorted from the most likely (Design) to the less one (Platform independence).
According to the likelihood categories defined in section 2.2.5 we can classify two
benefits as very likely: usefulness for design assessment (Design support) and doc-
umentation improvement (Documentation). In addition, we found that improved
comprehension during maintenance (Maintenance), higher product quality (Qual-
ity), and improved standard compliance (Standardization) are likely benefits. In the
Possible category fall Flexibility, Productivity, and Reactivity to changes. Eventually,
Platform independence can be considered as Unlikely.

MD* adopters vs. Basic Modellers On the left-hand side of Figure 2.10,
we report the benefit achievement ratio separately for users of MD* techniques

48

2.5 – Findings about benefits and problems

and those of basic modelling. From the diagram we can appreciate that for most
benefits the difference between more advance users (MD*) and basic users (basic
modelling) is limited. The odds ratios of the achievement ratios are reported in the
sixth column of table 2.3 aside the p value of the Fisher test. The odds ratios are
almost all greater than 1, indicating an improvement of the achievement ratio for
MD* adopters, the exception being documentation benefits that appear to be less
likely achieved among MD* adopters.

From the test results we can infer that a significant difference exists only for
three benefits: Standardization, Productivity, and Platform independence (they are
marked with a circle in Figure 2.10). MD* adopters are two and half times more
likely to achieve standardization benefits compared to basic modelling users, five
and half times more likely to achieve productivity benefits, and five times more
likely to achieve platform independence. We observe that the above differences are
consistent with the different intended purposes of modelling and MD*: commu-
nication the former and code generation or execution the latter. For these three
benefits, we classified the likelihood of benefits for MD* adopters; the only benefit
that could be classified in a different category was Platform independence: consid-
ering all modellers it was considered Unlikely, while restricting to MD* adopters it
becomes Possible.

Key MD* techniques More in detail, on the right-hand side of Figure 2.10, we
can observe the achieved benefits divided by adopters of code generation, model
interpretation, and model transformation, respectively.

Table 2.3 reports (six rightmost columns) the odds ratios of achieving benefit for
adopters of specific MD* key techniques vs. non adopters. Code generation induces
one significant difference, concerning Productivity which is 3.9 times more likely to be
achieved as a benefit when the technique is adopted. Most significant differences in
benefit achievement are observed when model interpretation is applied: Flexibility,
Productivity, and Reactivity to changes benefits are circa four times more likely to
be achieved when interpretation is used, in addition Platform independence if almost
five times more likely. When model transformation is applied, we observe a eight
times increment in Productivity achievement likelihood, and a four times increment
for Platform independence.

The most notable spike is observable in the right-hand diagram of Figure 2.10
and concerns Productivity benefit achieved by the adopters of model transformation
techniques; it corresponds to the odds ratio of eight we described above.

Company size and additional factors We verified whether a correlation exists
between the company size categories and the achievement ratio of each individual
benefit. The χ2 test did not reveal any significant relationship, all p values being

49

2 – Relevance, benefits and problems of modeling and DSL adoption

greater than 10%.
As a last step of analysis of the achieved benefits we focus on additional factors:

toolsmithing, use of UML and UML profiles, and the adoption of DSLs. Table 2.4
reports the benefit achievement odds ratios for the presence of the additional factors
vs. their absence.

We can observe that respondents who developed to some extent their tools (tool-
smithing) had a significantly higher likelihood of achieving several benefits: four
times higher for Standardization, Flexibility, and Productivity benefits; more than
five times higher for Reactivity to changes and almost ten times higher for Platform
independence. Apparently the adoption of UML and UML Profiles is not linked to
any increased benefit achievement ratio. The adoption of domain specific languages
(DSLs) is linked to three times higher likelihood of achieving Flexibility and Pro-
ductivity benefits, and four times higher chances to achieve Platform independence.

2.5.3 RQ8: problems

As a preliminary step we assess the cross correlation among the different problems.
Table 2.10 reports the correlation coefficients (Pearson’s φ) for each pair of problems;
in bold are reported the statistically significant correlations. We observe no strong
correlation, three moderate ones, and 14 small ones. Most of the correlations (28)
are negligible.

Overall

Table 2.8 reports the frequency of each problem and the corresponding occurrence
ratio. According to the 95% confidence interval (columns 4 and 5) we can assign a
relevance category conforming to the thresholds defined in section 2.2.5. We observe
three relevant potential problems: Too much effort required, Not enough expected
usefulness, and Lack of competencies.

Sometimes vs. Never

Figure 2.12 reports the frequency of problems preventing the adoption of models (as
reported by respondents never using modelling) or hindering it (respondents using
modelling just sometimes) is reported. We remind that participants that use models
always were not asked this question.

We looked at the odds ratios of problem occurrence for respondent that never
adopt modelling vs. those who sometimes adopt, all the values are close to 1 –
between 0.65 and 1.71 – except for Refusal from developers and Inadequacy of sup-
porting tools having with odds ratio 0.41 and 0.26 respectively. Indicating they are
the most likely reasons for not adopting modelling.

50

2.5 – Findings about benefits and problems

Individual

Micro

Small

Medium

Large

Too much
effort required

0% 50%

Not useful
enough

0% 50%

Lack of
competencies

0% 50%

Refusal from
management

0% 50%

Lack of
supporting tools

0% 50%

Refusal from
developers

0% 50%

Inadequacy of
supporting tools

0% 50%

Cost of
supporting tools

0% 50%

Fear of
lock−in

0% 50%

Not flexibile
enough

0% 50%

Figure 2.13. Problem occurrence ratio per company size category.

We could not observe any statistically significant difference between the problem
occurrence ratio of modellers vs. non modellers.

Basic Modellers vs. MD* adopters

Table 2.8 also reports the frequency and occurrence ratio of each problem among
basic modelling adopters vs. MD* technique users. In addition (rightmost two
columns) the odds ratio of incurring in a problem for MD* vs. basic modellers is re-
ported together with the relative statistical significance, computed by means of the
Fisher test. The only statistically significant difference concerns the Fear of lock-in,
which appears almost six times more frequent among the MD* techniques adopters.
Next to this difference, though not significant, is the one about the Inadequacy of
supporting tools.

Company size

Figure 2.13 reports the distribution of problems occurrence ratio by company size.
We can observe a substantially uniform distribution among the different size classes,
with the exception of a few cases. According to the χ2 test, we identified two
problems whose occurrence is significantly related to the company size: Lack of
competencies and Refusal from developers. Concerning the former, small and micro
companies are surprisingly reporting this problem less than medium, large, and
individual companies. Refusal from developers is instead mostly reported in medium
sized companies.

51

2 – Relevance, benefits and problems of modeling and DSL adoption

O
ccu

rren
ce

ra
tio

B
a
sic

M
D

*
M

D
*

v
s.

B
a
sic

F
req

R
a
tio

9
5
%

C
I

R
elev

a
n

ce
N

u
m

P
ro

p
.

N
u

m
P

ro
p

.
O

R
p

T
o
o

m
u

ch
eff

o
rt

req
u

ired
6
7

5
0
%

4
1
%

..
5
8
%

R
elev

a
n
t

2
3

4
6
%

2
1

6
0
%

1
.7

5
0
.2

7
N

o
t

u
sefu

l
en

o
u

g
h

6
4

4
7
%

3
9
%

..
5
6
%

R
elev

a
n
t

2
6

5
2
%

1
5

4
2
%

0
.7

0
0
.5

1
L

a
ck

o
f

co
m

p
eten

cies
4
6

3
4
%

2
6
%

..
4
3
%

R
elev

a
n
t

1
6

3
2
%

1
0

2
8
%

0
.8

5
0
.8

1

R
efu

sa
l

fro
m

m
a
n

a
g
em

en
t

3
3

2
4
%

1
8
%

..
3
3
%

M
o
d

era
tely

R
elev

a
n
t

1
4

2
8
%

9
2
5
%

0
.8

9
1
.0

0
L

a
ck

o
f

su
p

p
o
rtin

g
to

o
ls

2
3

1
7
%

1
1
%

..
2
5
%

M
o
d

era
tely

R
elev

a
n
t

9
1
8
%

3
8
%

0
.4

3
0
.3

4

R
efu

sa
l

fro
m

d
ev

elo
p

ers
1
9

1
4
%

9
%

..
2
1
%

S
ca

rcely
R

elev
a
n
t

9
1
8
%

6
1
7
%

0
.9

4
1
.0

0
In

a
d

eq
u

a
cy

o
f

su
p

p
o
rtin

g
to

o
ls

1
4

1
0
%

6
%

..
1
7
%

S
ca

rcely
R

elev
a
n
t

4
8
%

8
2
2
%

3
.3

6
0
.0

6
C

o
st

o
f

su
p

p
o
rtin

g
to

o
ls

1
4

1
0
%

6
%

..
1
7
%

S
ca

rcely
R

elev
a
n
t

6
1
2
%

4
1
1
%

0
.9

5
1
.0

0
F

ea
r

o
f

lo
ck

in
1
3

1
0
%

5
%

..
1
6
%

S
ca

rcely
R

elev
a
n
t

2
4
%

7
2
0
%

5
.8

7
0
.0

3
N

o
t

fl
ex

ib
le

en
o
u

g
h

1
0

7
%

4
%

..
1
4
%

S
ca

rcely
R

elev
a
n
t

4
8
%

3
8
%

1
.0

8
1
.0

0

T
ab

le
2
.8

.
P

ro
b

lem
s

en
cou

n
tered

p
reven

tin
g

ad
op

tion
of

M
D

*.

52

2.6 – Debriefing session

2.6 Debriefing session

After the data analysis and interpretation of the results, we conducted a debriefing
session with three expert software professionals, which participated in our survey,
so as to understand MD* findings that are difficult to interpret.

The experts we asked for clarification cover different features of MD*: (1) is
the responsible architect for the design of an in-house MD* solution (in short, a
suite for the rapid development of information systems) for a large organization;
(2) is the CEO of a company producing a MD* tool for the development of Web
applications based on code generation; (3) is the Sales & Marketing Director of a
company producing a model driven Web application framework based on run-time
execution of models.

Moreover, we took advantage of the availability of such qualified professionals
and asked them what they believe is needed to improve the maturity of MD* in the
Italian industry.

The outcome of the interviews with the three experts is summarized by the mind
map shown in Figure 2.14. The experts are identified by a number in the mind
map: the legend located inside the figure explains which expert corresponds to a
given number (e.g., the number two identifies the CEO of the company producing
a MD* tool for the development of Web applications). In that figure, the four main
issues are reported by means of slogans (e.g., Higher maturity of micro-companies).
Then, for each issue we listed the explanations given by the experts as nodes. The
explanations can be supported by one or more experts: e.g., the first explanation
of the first issue (i.e, Small companies can afford simpler, and possibly non very
mature, frameworks, ...) is supported by two different experts while the second
(i.e, More flexible in adopting new processes and technologies) is supported by just
one of the experts (the number two). Only one explanation was supported by all
the experts while the others are supported by one or two experts. That should be
considered while interpreting the information provided.

2.6.1 Issue 1) Experience in MD* is very low

Low experience in MD* has been attributed to several different causes: mostly the
fact that apparently models are used as tools for documentation or analysis and not
as artefacts inserted into a MD* approach. According to our experts, the primary
cause for this is little popularity in the industry that limits the capability for devel-
opers to build “on-the-job experience”. One of the professionals also suggested that
huge standardization effort, that bring countless notations and techniques together,
may result intimidating and actually preventing diffusion of MD* practices. The
considerations from the experts strengthened our consideration about the opportu-
nities in the industry and academia.

53

2 – Relevance, benefits and problems of modeling and DSL adoption

Figure 2.14. Mind map of the experts’ opinions

54

2.6 – Debriefing session

2.6.2 Issue 2) The percentage of code that is generated is
often low

Here, returns the supposed use of models barely for documentation purposes or for
generating just the initial code skeletons; the typical case consists of generating the
code structure from a UML class diagram. In our experts’ opinion, the primary
cause for this limited use of models lies in the scarcity of appropriate tools and
the limited knowledge of the few available. In practice, limited tools are used at
individual developer’s level because of several factors: it is difficult to get manage-
ment commitment at team or organization level, common modelling languages (e.g.,
UML) allow just a limited code generation, and aim for more extensive generation
clashes with the fear of losing control over code.

2.6.3 Issue 3) Micro-companies appear to be more mature
in MD* than larger companies

Only two of our experts offered an explanation. Small companies can afford to
adopt non fully mature solutions, which are not easily accepted in larger companies,
and the “small” size allows more flexibility in using new technologies and processes.
Moreover, in large companies there is more resistance, by developers, to the intro-
duction of novel techniques and processes than in smaller ones: novelties threaten
personal competence niches which are more likely in large companies.

2.6.4 Question) What is needed to improve the maturity
and foster the diffusion of MD* in Italy?

The experts mentioned factors in three categories: languages, tools, and processes.
Standardized languages are the key to the diffusion of MD* approaches; UML and
BPMN are positive examples but are not sufficient because they do not cover all the
relevant aspects (e.g. interactions and systems communication). Moreover, MD*
usage requires integrated toolsets supporting the full development process. From a
process perspective, there is a need for customized processes that include not only
the generation but also, release management, versioning, and deployment. As far
as management is concerned, a successful application of MD* techniques requires
understanding the key success factors, the applicability in different domains and
the skills required from developers. From a more general perspective, focus on
quantitative aspects of software production does not incentive use of models, which
can be exploited when quality is considered. In addition, at a management level,
it is important to know which are the success factors for different domains and the
skills required to practice MD* techniques.

55

2 – Relevance, benefits and problems of modeling and DSL adoption

2.7 Discussion

Be
ne

fit
	 a
ch
ie
ve
m
en

t	
lik
el
ih
oo

d	
du

e	
to
	

sim
pl
e	
m
od

el
lin
g	

Observed	 significant	 likelihood	 increment	 due	 to	

Design	

Key	 MD*	 techniques	

To
ol
sm

ith
in
g	

M
od

el
	

tr
an
sf
or
m
a@

on
	

M
od

el
	

in
te
rp
re
ta
@o

n	

Co
de

	
ge
ne

ra
@o

n	

DS
L	

Very	 likely	 	 	 	 	 	 	 	 	 	 	

Very	 likely	 	 	 	 	 	 	 	 	 	 	 Documenta@on	

Likely	 	 	 	 	 	 	 	 	 	 	 Quality	

Likely	 	 	 	 	 	 	 	 	 	 	 Maintenance	

Likely	 	 	 	 	 	 	 	 	 Standardiza@on	

Possible	 	 	 ✔	 	 	 ✔	 ✔	 Flexibility	

Possible	 ✔	 ✔	 ✔	 ✔	 ✔	 Produc@vity	

Possible	 	 	 ✔	 	 	 ✔	 	 	 Reac@vity	 to	 changes	

Unlikely	 ✔	 ✔	 	 	 ✔	 ✔	 PlaLorm	 independence	

Figure 2.15. Achievable benefits with Modelling and MD* techniques adoption effects.

General diffusion The first result we obtained from the survey is that of a large
diffusion of modelling practices (68% of respondents) and a relatively ample dif-
fusion of MD* techniques (48% of the adopters of modeling and 32% of the entire
valid sample). Considering our plain relevance criteria, we can classify modeling as
a highly relevant technique in the industrial context; while MD* can be considered
as relevant. This information is important per-se for us researchers: it means that
research conducted in this context has the potential to yield a significant impact on
practitioners.

When looking at how the adoption is distributed with respect to company size,
we observe a bimodal shape both for modelling and MD*: medium-large companies
are more keen to adopt modelling and MD*, small companies are less prone to
these practices, and micro and individual companies are similar to large ones in this
respect.

Specific techniques diffusion As far as key MD* techniques are concerned,
almost all adopters of MD* do apply code generation, one third apply model in-
terpretation, and one fifth use model transformations. The adoption rate of code

56

2.7 – Discussion

generation by micro companies12 is significantly higher than other companies while
the two latter techniques are largely adopted by micro companies only. The large
diffusion of those techniques in micro companies is in stark contrast to the very low
adoption in small companies.

Our explanation for the above facts is that model interpretation and transfor-
mation are relatively novel techniques, at least more advanced than code generation
which is well-known and more used in the industry. As a consequence, their adop-
tion brings risks: apparently only micro companies, and to a much lesser extent
medium-large ones, are willing to take them. Micro companies are possibly driven
by the competition to stay in the market, medium-large ones perhaps believe in
the advanced techniques as competitive advantages. Moreover, micro companies
can afford to adopt, more easily, not fully mature solutions — nowadays, provided
in the market for Model transformation and interpretation — which are not easily
accepted in larger companies. In addition, the “micro” size allows them more flexi-
bility in using new technologies and processes (one possible co-cause for that could
be the larger freedom developers have in micro companies). Finally, probably, in
large companies there is more resistance, by developers, to the introduction of novel
techniques and processes than in smaller ones.

Benefits achievement Another important finding concerns the likelihood of
benefits achievement. The adoption of modelling makes improved design and doc-
umentation benefits very likely to be achieved (see Table 2.3), while maintenance,
quality, and standardization are simply likely.

Figure 2.15 shows the the relationship between MD* techniques and the benefits:
each checkmark indicates that the adoption of the technique in the column causes
a statistically significant improvement in the likelihood of achieving the benefit in
that row.

In practice the four topmost rows in Figure 2.15 represent the most commonly
achievable benefits. Support in design definition, Improved documentation, easier
Maintenance, and higher Quality are obtained through the simple adoption of mod-
elling. We could not find statistically significant evidence of any MD* effect on
their achievement because, due to the design of our survey, we could not compare
modellers vs. non modellers. (Table 2.3).

MD* specific techniques play a significant role for the remaining five benefits
investigated in our study. The odds of achieving Flexibility is almost four times
higher when model interpretation is adopted. When it comes to Productivity all
the three MD* techniques increase the likelihood obtaining an improvement, in
particular model transformation may increase the odds by eight times. Reactivity to

122 ≤ size ≤ 10

57

2 – Relevance, benefits and problems of modeling and DSL adoption

changes is easier to achieve when model interpretation is adopted, while the chances
of achieving Platform independence are increased by applying model transformation
or model interpretation.

Moreover, Figure 2.15 shows how other two techniques – toolsmithing and DSLs
–, usually associated with MD* practices, can play a significant role. The develop-
ment of own tools (toolsmithing) is a significant enabler for all bottom five benefits
in the figure (Flexibility, Productivity, Reactivity to changes, and Platform inde-
pendence). Particularly relevant is the contribution of toolsmithing to Platform
independence: an Odds ratio of 10 is very high and suggests that projects hav-
ing platform independence among their priorities should seriously consider building
their own tools. Unfortunately, we have no information about the effort required
to realize those tools. More evidence is needed to drive the “make or buy” deci-
sion. Finally, the use of Domain Specific Languages increases the odds of achieving
Flexibility, Productivity, and Platform independence, by three to four times.

We can interpret statistical significance as a causal relationship, which represents
the empirical basis for pragmatic decision making. Under such perspective, Figure
2.15 illustrates the factors that can play the role of the deal breaker in achieving a
given benefit, on the basis of the collected empirical evidence.

In practice, Figure 2.15 is an attempt to synthesise a piece of evidence that can
be leveraged by practitioners. For instance, if the goal for a project is Productivity,
all the three MD* specific techniques – code generation, model interpretation and
model transformation – can help; while if we aim at achieving Reactivity to changes
only model interpretation and toolsmithing can help.

We are not claiming the solutions derivable by Figure 2.15 are the only possible
ones: they are combinations that proved statistically significant in our sample. As
such, they represent the starting point in finding a customized solution for a goal or
set of goals.

Another insight we get from a overall glance at Figure 2.15 is that MD* and
other techniques play an important role where the simple modelling is weaker and
vice-versa. From this picture we confirm the impression that simple modelling and
MD* are two complementary sets of techniques.

Problems If we look at the problems restraining from the adoption of modelling,
as reported by respondents, we observe that most problems are cited less often by
participants that never use modelling than those who use it sometimes (see Figure
2.12). The possible explanation for this difference is that potential problems and
risks are considered more often when development teams has to repeatedly balance
pros and cons for using modelling or MD*.

The notable exception to the above trend is represent by the Lack of competencies
and Lack of supporting tools. Such problems appear to be the main show-stoppers

58

2.8 – Threats to validity

preventing altogether the adoption of modelling and MD*.

The Fear of lock-in is a problem which seem to affect a lot more MD* prac-
titioners than adopters of simple modelling. This could derive from the lack of
affirmed standards in MD* while in modelling UML seems to be widely used. This
lack results into both poor options for replacing tools by equivalent alternatives and
problems in building heterogenous tool-chains.

We believe that the findings of our survey, and in particular, these two above
problems (Lack of competencies and Lack of supporting tools) deserve attention
from Italian industries and universities. The former should invest more in research,
tools building (software modelling and MD* tools are needed) and training (experts
in MD* are needed), and the latter should produce more experts in modeling and
model driven techniques. This strongly suggests to improve university curricula with
specific courses dealing with topics related to software modelling, and more specif-
ically with code generation, model execution, and model transformation. Most of
the times, students are trained to build new systems using traditional processes and
only in the better case the foundation of MD* are explained in software engineering
courses (e.g., this is the case in the Università di Genova — Italy). While it is
our opinion that they should focus more on modelling and model driven techniques
(in particular in automatic code generation, given that, it is the most used in the
industry). On the university side, the Lack of supporting tools and dissatisfaction
about them (Figure 2.12) should be a prompt to produce new prototypes and ex-
periment more in this direction. On the industrial side, we can infer a huge market
opportunity for modeling and MD* tools. Moreover, investments in this market
could obtain large returns especially for large companies. And possibly, companies
and universities should collaborate to make better tools.

2.8 Threats to validity

Industrial surveys are intrinsecly difficult to realize and common threats to validity
listed in [Torchiano and Ricca, 2013].

We analyse the potential threats to the validity of our study according to the
four categories suggested in [Wohlin et al., 2000]. In general on-line surveys are
considered to have lower internal validity and stronger external validity in respect
to other means of empirical investigations as case-studies or experiments [Punter
et al., 2003].

Construct validity threats concern the relationship between theory and obser-
vation. They are mainly related to the measurements performed in the study. In
particular there are two distinct issues: (i) whether we measured the usage of tech-
niques in the right way (measurement instrument and process) and, (ii), whether we

59

2 – Relevance, benefits and problems of modeling and DSL adoption

selected the right attributes to represent the construct of technology usage (mea-
sured attribute).

Concerning the measurement instrument – a personal opinion survey – the items
definitions and the scales used to code the answers are key factors, and they can
potentially influence our results because of the difficulty respondents could have en-
countered in either understanding or (mis)interpreting the items. We paid particular
attention to mitigate such threats:

• The questionnaire was designed using a standard approach, trying to avoid as
much as possible ambiguous questions [Kitchenham and Pfleeger, 2008].

• We strived to formulate the items in a simple and straightforward style (see
Table 3.1)

• We inserted the meaning of relevant terms (e.g., model, model execution, MD*)
in the questionnaire (directly in the questions or as footnotes).

• We guaranteed assistance by phone and e-mail to respondents, to support
them in case of unclear questions.

• We conducted a pre-test of the instrument, by means of three pilot studies
with industrial professionals, to check that the questions were understandable,
before putting on-line the questionnaire.

• In particular the lists of advantages (question Dev11) and problems (question
Dev09) proposed to the respondents could have been incomplete. In the first
case, we opted for a closed question (see Figure 2.2) on the basis of the expert
practitioners judgement in the pilot. On the contrary, in the second case, since
the range of problems is potentially very large, we opted for a semi-open ques-
tion: we provided a set of predefined options but let the respondent free to add
others (see Figure 2.2). Considering the answers of Dev9, we can confirm that
the list of proposed problems was quite complete, since respondents sparingly
used the “free” option.

As far as the measured attributes are concerned, we identified the MD* usage
construct with the adoption of three key techniques: code generation, model trans-
formation, and model interpretation. We are confident that they represent the main
features of MD*, or at least a largely shared view of MD*, although we cannot
exclude there exists some community with a different perspective on MD*.

In addition from the correlation analysis, we found a strong correlation between
Reactivity to changes and Flexibility; this may indicate the possibility of a single
construct underlying the two measures. We explored the possibility of removing one
of the two, but eventually we preferred to retain all the information and keep both

60

2.8 – Threats to validity

at the expense of a small additional complexity of the study. We believe that this
decision does not invalidate the conclusions of our study.

Internal validity threats concern confounding factors that may affect the out-
come of our results. In general, it is hard to control these factors. It is well-known
that, a survey being an unsupervised study, the level of control is very low.

Internal validity is mainly threatened by coverage issues:

• We incurred in a possible selection bias due to the self-exclusion of participants
not interested in modelling. Self-exclusion is a well-known problem especially
in Internet surveys advertised by means of mailing lists and groups. The
possible threat consists in an over estimation of the proportion of respondents
who declared interest in modelling and therefore of the overall relevance of
modelling and MD* in the Italian industry. The main impact of this issue
would be on the answer to RQ1, the findings relative to the other research
questions should not be significantly affected.

We tried to mitigate this threat by presenting the request as a study on soft-
ware development without emphasizing the modelling aspect and addressing
it to a varied population. Though we cannot definitely rule out the threat,
there are two aspects in the collected data that make us at least confident that
the magnitude of the threat is limited. First, a significant number of valid re-
spondents never used modeling therefore a portion of the sampled population
although not interested in modelling did filled in the survey anyway. Second,
among the incomplete answers – respondents who started the questionnaire
but did not complete it and were thus discarded from analysis – (26 occur-
rences), 10 respondents did anyway provide a response to question DEV08:
all of them affirmed to use models sometimes (8 respondents) or always (2 re-
spondents); if in a conservative move we ascribe the remaining 16 to the group
of respondents never using modelling, the picture we obtain considering all
the 181 (155 complete + 26 incomplete) responses is not significantly different
than the complete responses alone.

• Another threat derives from the possible “foreign units” in the sample: the
target population of our study consisted of development teams, it is possible
that the questions were answered by a responded without the required knowl-
edge (e.g., the secretary of the IT manager). We addressed this concern in the
protocol: we explicitly required the questionnaire to be filled in by technical
personnel involved in the development. Even in the case of a knowledgeable
respondent, (s)he could be unaware of some details; this is more likely if the
team is very large [Kitchenham and Pfleeger, 2008].

• Finally, the sampling procedure made possible to select duplicate units: two
different members of the same development team could have answered our

61

2 – Relevance, benefits and problems of modeling and DSL adoption

questionnaire. We addressed this threat by means of a post-survey validation:
we found that the respondents from the same company actually worked in
distinct business units and belonged to distinct teams.

Conclusion validity threats concern the possibility to derive illegitimate con-
clusions from the observations. When hypothesis testing was used to compare two
or more populations, we adopted non-parametric tests (Kruskal-Wallis, Fisher exact
test and Mann-Whitney), that can be used without specific assumptions (e.g., with-
out checking data normality). Similarly, we used the proportion test to determine
the confidence interval for relevance of modelling in general.

External validity threats concern the extent to which our findings can be gen-
eralized. For our survey, we used the Commerce Chamber database to render our
sample as representative as possible. Had we used only this sampling source, we
could have performed a stratified sampling, using strata based on company size
as was performed e.g. in [Egorova et al., 2010]. However, we decided to integrat
that sample using a non-probabilistic sampling schema (the same was done in [Nu-
groho and Chaudron, 2008]). As a result, the solution we selected is cost-effective
and allowed us to obtain a sample large enough to achieve a reasonable number of
adopters of all the techniques. This should be considered interpreting the results we
obtained: even if the demographics of our sample is quite diverse, the generalization
of our results to the entire population may not be appropriate. Moreover, given the
sampling strategy we adopted, we cannot calculate the response rate (this problem
is common in software engineering surveys [Kitchenham and Pfleeger, 2008]). We
are also aware that the size of our sample is not large enough for generalization
purposes (of course, further data points will be highly desired to better generalize
our findings). However, that size is similar to other industrial surveys conducted
on different software engineering subjects (e.g., [Hauge, 2007, Hutchinson et al.,
2011b, Jelitshka et al., 2007, Li et al., 2008, Torchiano et al., 2011a]).

2.9 Related work

Literature reports some anecdotal evidence collected through case-studies
(e.g., [MacDonald et al., 2005]), while rigorous empirical studies evaluating software
modelling and MD* are quite rare. Carver et al. [Carver et al., 2011] performed
a literature review considering the most common venues where articles related to
MD* are published. They noted that the 73% of the papers they considered didn’t
contain any form of validation, consequently they affirm that the rigor of empirically
validated research in software modeling is rather weak and the community need to
focus more on this aspect. In particular, as stated in [Mohagheghi and Dehlen,
2010], there are a few reports on the advantages of applying MDE in industry, thus

62

2.9 – Related work

more empirical studies are needed to strengthen the evidence. Also van Deursen
et al. [van Deursen et al., 2007] report on the importance of having more empiri-
cal studies, in particular about the improvements produced by MD* adoption on
maintainability costs.

In the rest of this section, we focus on empirical studies about issues, challenges
and benefit of modelling and MD* adoption. Coherently with the stance adopted
in our survey, we decided to avoid a clear partitioning between software modelling
and MD*, also given that the two aspects are often interwoven.

We grouped the related studies as much as possible considering their category:
literature reviews, surveys, case studies, and experience reports.

2.9.1 Literature reviews

Budgen et al. [Budgen et al., 2011] conducted a systematic literature review on
UML. Authors underline the necessity of more empirical studies about the adoption
of UML. Most of the empirical studies are laboratory experiments while more field
studies are needed.

Mohagheghi and Dehlen in their work [Mohagheghi and Dehlen, 2010] introduce
a literature review of empirical studies (and more in general of industrial experi-
ences), from 2000 to 2007, about MDE in industry. The goal is evaluating MDE
benefits and possible limitations. They selected 25 papers and their main conclu-
sions are: (i) MDE is applied in a wide range of domains, (ii) MDE can lead to
various benefits (i.e., higher productivity and improved communication), (iii) MDE
is not considered mature enough and there are no appropriate tool chains, and (iv)
quantitative evidence was found in one paper only, about productivity gains. Our
findings are consistent with theirs, especially with items (ii) and (iii).

2.9.2 Surveys

Forward et al. in their work [Forward et al., 2010] analyses the results of a survey
with 113 software practitioners (about two-thirds were from Canada or the USA)
on the perception of software modeling. They mainly investigate how, when and
why software developers use (or not) models and which notations and tools are
adopted. In their sample, modelling is performed at least sometimes by over 95% of
participants (in our case the modellers are 68%). Similarly to us, they try to answer
the following research question:“Why do some developers prefer not to model?”
(similar to our RQ3). They report that the biggest problem is the synchronization
between models and code (models become out of date with code). We do not
have evidence of this problem. Other problems are the quality of the generated
code and issues with the modelling tools (e.g., too expensive, “heavyweight” and
difficult to use). Our results are in line with this latter perception. A portion of

63

2 – Relevance, benefits and problems of modeling and DSL adoption

our sample think that modelling tools represent a limitation for MD* and more in
general for software modelling. The main findings reported in their conclusion are:
(i) developers consider models in a broader sense (i.e., not only UML models but
also textual DSL models), (ii) UML is the predominant modelling notation but is
often used informally, (iii) modelling tools are mainly used for documentation (a
fact that could explain the large percentage of documentation benefits reported in
Figure 2.10), and (iv) it is uncommon that models are used for generating code.

Davies et al. in [Davies et al., 2006] report the result of a survey conducted in
Australia on the status of conceptual modelling that has received 312 responses.
This study aims to determine the actual modelling practice, giving a answer to the
research question:“how do practitioners actually use conceptual modelling in prac-
tice?” that is specified by three sub-questions: (i)“which are the tools and techniques
used for conceptual modelling?” (ii)“what is the purpose of modelling?”, and (iii)
“what are the major problems and benefits specific to conceptual modelling?” The
last sub-question is similar to ours RQ2 and RQ3, but from a different perspective.
They have identified problems and benefits in the usage of conceptual modelling
by means of textual analysis of data relative to problems and perceived key suc-
cess factors. Concerning the last sub-questions they report which are the factors
influencing the continued use. The major key factor is relative advantage/useful-
ness, other factors (in order of relative importance) are: communication to/from
stakeholders, internal knowledge of techniques, user expectations management, un-
derstanding the model integration into the business, tool/software deficiencies. The
first factor corresponds to our finding of a commonly achieved benefit (documen-
tation improvement), the last factor corresponds to one of the problem we found
limiting adoption of modelling (inadequacy of supporting tools).

Hutchinson et al. in [Hutchinson et al., 2011b] report the results of an empirical
study on the assessment of MDE in industry. Their work has two goals: identify the
reasons of success or failure of MDE and understand how MDE is actually applied
in industry. They employed three forms of investigation: questionnaires, interviews,
and on site observations, having as target practitioners, MDE professionals and
companies practising MDE respectively. The questionnaire has received over 250
responses from professionals (the most of them are working in Europe). Some of
the reported findings are: (i) about two-thirds of the respondents believe that using
MDE is advantageous in terms of productivity, maintability and portability, (ii) the
majority of respondents use UML as modelling language, and a good number use in-
house developed DSLs, (iii) almost three quarters of respondents think that an extra
training is necessary to use MDE, (iv) the majority of respondents agree that code
generation is an important aspect of MDE productivity gain, and (v) a little less
than half of the respondents think that MDE tools are too expensive. We observed
similar perceptions in our survey except for the issue of extra-training which was
not considered in our survey, however we observed that the lack of competencies is

64

2.9 – Related work

one of the problems most frequently reported by companies. Differently from the
results of their survey, the cost of supporting tools is seen as a problem only by a
small proportion of respondents in our sample.

Nugroho and Chaudron in their work [Nugroho and Chaudron, 2008] analyses
the results of a survey about the UML usage and its perceived impact on quality
and productivity with 80 professional software engineers. The findings reveals that:
(1) the majority of the respondents agreed that a model should describe parts of
a system that are more critical and complex, instead of specifying all parts of a
system equally; (2) incompleteness in UML models is associated to implementation
problems (it brings to deviations in the implementation) and, (3) using UML impacts
productivity in analysis, design and implementation but not in maintenance. This
last finding seems partially in contrast with our results where easier maintenance is
one of the benefits associated with modelling. Similarly to our survey, their findings
reveal problems associated to the usage of tools: the features in current UML CASE
tools that should help maintaining aligned code and design, e.g., reverse engineering
and round-trip engineering, are not yet mature.

2.9.3 Case studies

The work of Hutchinson, Rouncefield and Whittle [Hutchinson et al., 2011a] focuses
on the deployment of MDE in industry. It illustrates three industrial case studies
in three different business contexts (printer, car manufacturing and telecommunica-
tion companies) and identifies some lessons learned. In particular, the importance
of complex organizational, managerial and social factors in the success or failure
of the MDE deployment. The authors report some organizational factors that can
affect the success or the failure of MDE deployment. The factors that can affect
it positively are: (i) a progressive and iterative approach, (ii) user motivation in
the MDE approach, (iii) an organizational willingness in integrating MDE in the
whole organization, and (iv) having a clear business focus (where MDE is adopted
as a solution for new projects). Instead, factors that can affect it negatively are:
(i) the decision of adopting MDE being taken by IT managers, in top-down fashion
and implemented “all at once”, (ii) MDE being imposed on the developers, and (iii)
an inflexible organization with a lack of integration of MDE in previous processes.
The only common aspect with the work proposed in [Hutchinson et al., 2011a] con-
cerns the motivation of developers. The corresponding finding lies in the problems
reported in Figure 2.12 (refusal from developers and refusal from management).

Mohagheghi et al. [Mohagheghi et al., 2012] interviewed – using convenience
sampling – developers from four companies involved in an initiative called MOD-
ELPLEX. They examined the factors affecting adoption of MDE. Regarding use-
fulness they found uncertain results: most participants recognize the usefulness of
models but they are not sure about the impact on the quality of the final product or

65

2 – Relevance, benefits and problems of modeling and DSL adoption

the effects on productivity. MDE is perceived as not simple: its complexity makes
it viable for engineers but not for non technical people. This finding is confirmed by
our results. They show that only in a few cases business experts are involved during
modelling tasks. Regarding compatibility with the existing development process
the companies complained about the lack of standards and the consequent lock-in
effect. All interviewed companies reported some problems in integrating their ex-
isting approaches with MDE. Tools could have been part of their problems, them
being not considered satisfying by a part of the sample. In particular, some par-
ticipants expressed several concerns about the scalability of the MDE approach to
large projects. Advantages reported are limited to the usefulness for documentation
and communication purposes. Major reasons preventing adoption of MDE are the
immaturity of tools and processes as well as the lack of competencies. Such latter
conclusions are largely consistent with our findings.

2.9.4 Experience reports

Heijstek et al. [Heijstek and Chaudron, 2009] study the impact of MDD on a large
scale industrial project and the main features of a large scale industrial MDD project.
They produced an experience report using, as sources of information, data from the
Subversion repository and semi-structured interviews with team members. About
the impact of MDD, the conclusions are that: almost two-thirds of the total effort is
spent on developing models and that the team members report an increase in pro-
ductivity, besides a perception of improvement of the overall quality and a reduction
of complexity. The authors confirmed the increase of quality by counting the aver-
age number of defects w.r.t. the average number of defects found in similarly sized
projects in which MDD was not used. Their findings – including the improvement
of the final product – have been observed also in our survey. While we do not have
data about the effort spent on realizing the models, many participants considered
that effort to be too big and therefore affecting their decision to adopt modelling.
They identified two typical features of large scale MDD projects: (i) high average
complexity per diagram, (ii) activity diagrams and class diagrams are the more used
UML diagrams.

Mohagheghi et al. [Mohagheghi et al., 2009] report a list of challenges and success
criteria of MDE adoption. They, summarize them after having conducted two real
projects in large organizations. The most important challenge is the definition of
a MDE environment, that require the company: (i) to develop a communication
language for technical and domain experts by means of UML profiles and/or meta-
models and (ii) to select and integrate tools for building, transforming, storing,
reusing and composing models. This last point is particularly difficult to reach due
to the lack of such a tool-chain on the market. Such finding is consistent with our
results. They also report that training is a major challenge (same problem stated

66

2.10 – Summary and future work

in [Hutchinson et al., 2011b]). In addition, they see advantages in the gradual
introduction of MDE in the industry and in the creation of expert teams to support
and create tools.

2.10 Summary and future work

In this chapter we presented some results from a survey performed to investigate:
(1) what is the relevance of software modelling and MD* in the Italian industry,
(2) the way software modelling and MD* are applied, and (3) the motivations on
which adoption is chosen or refused. Here we summarize the findings and discuss
directions for future work.

G1) Relevance

We found that the practice of producing models is quite widespread (68% of the
entire sample), while the proportion of development teams using MD* techniques
is smaller (48% of the adopters of modeling) but still noteworthy. Among the MD*
techniques, the most used is code generation (almost all adopters of MD* do apply
code generation). Considering our relevance criteria, we can classify modelling as a
highly relevant technique in the Italian industrial context while MD* can be con-
sidered as relevant. This result implies that any research gain in this field has the
potential of a large return on practice.

G2) Processes, Languages and Tools

Apparently, many companies use models to capture an high level view of the system
and for documentation purposes. A possible cause of this reality is that developers
are not enough educated in model driven techniques.

UML is largely more used than DSLs.
Over the 50% of companies do not adopt any of the techniques considered (code

generation, model interpretation and model transformations). Among this tech-
niques the one being most widespread is code generation.

Models are never created exclusively by business experts but instead technical
figures seem to be always included in the process.

G3) Motivations

More relevant benefits such as: Support in design definition, Improved documen-
tation, easier Maintenance, and higher Quality seem to be obtained when simple
models are used and no further improvement is observed with MD* adoption. On
the other hand, MD* plays a significant role for Productivity, Platform independence

67

2 – Relevance, benefits and problems of modeling and DSL adoption

and Standardization. The complete set of empirically backed causal relationships
(technique adopted → benefit) observed in our study is shown in Figure 2.15. Such
figure is an attempt to synthesise pieces of evidence that can be used by practitioners
to decide whether to invest on a specific technique, given the desired benefits.

The main problems mentioned by adopters of modelling mimic the typical anec-
dotal ones: models require too much effort to be produced and often they are not
useful enough. Instead, the problems preventing altogether the adoption of both
modelling and MD* seems to be related to a mix of technological and human fac-
tors, that is lack of supporting tools and lack of competencies.

Future work

Such findings can originate suggestions useful for both Italian companies and uni-
versities. The former should invest more in research and tools building in order to
address the lack of supporting tools (and in general tools inadequacy) reported by
the respondents of our survey. The latter should produce more experts in modelling
and model driven techniques so to raise the level of expertise and satisfy today’s
industrial needs.

As future work, we would like to compare the level of adoption of modelling
and MD* in Italian companies to the situation in other countries by replicating
this study in other nations. In particular, we are interested to understand whether
the companies in other nations have the same problems that the Italian have and
whether (or not) they achieve the same benefits using modelling and MD*.

Detailed tables

We report here the cross correlations among the benefits in Table 2.9 and this among
the problems in Table 2.10.

Acknowledgements

We would like to thank the people who took part in our survey, the organizers of
CodeMotion for advertising the survey, and the experts which we interviewed and
discussed our findings with: Paolo Arvati from CSI Piemonte, Stefano Butti from
WebRatio and Paolo Predonzani from ManyDesigns

68

2.10 – Summary and future work

D
es

ig
n

D
oc

um
en

ta
ti
on

M
ai
nt

en
an

ce

Q
ua

lit
y

St
an

da
rd

iz
at

io
n

F
le
xi

bi
lit

y

P
ro

du
ct

iv
it
y

R
ea

ct
iv

it
y

to
ch

an
ge

s

Documentation 0.38

Maintenance 0.33 0.21

Quality 0.23 -0.08 0.35

Standardization 0.07 0.08 0.16 0.22

Flexibility 0.18 -0.13 0.24 0.39 0.14

Productivity 0.17 -0.06 0.12 0.37 0.26 0.42

Reactivity to changes 0.02 -0.12 0.24 0.35 0.28 0.60 0.39

Platform independence 0.17 0.10 0.21 0.17 0.25 0.36 0.38 0.36

Table 2.9. Benefits achievement correlation.

N
ot

us
ef
ul

en
ou

gh

T
oo

m
uc

h
eff

or
t
re

qu
ir
ed

L
ac

k
of

su
pp

or
ti
ng

to
ol
s

In
ad

eq
ua

cy
of

su
pp

or
ti
ng

to
ol
s

L
ac

k
of

co
m

p
et

en
ci
es

Fe
ar

of
lo

ck
in

R
ef
us

al
fr
om

de
ve

lo
p
er

s

R
ef
us

al
fr
om

m
an

ag
em

en
t

C
os

t
of

su
pp

or
ti
ng

to
ol
s

Too much effort required 0.01

Lack of supporting tools 0.04 -0.02

Inadequacy of supporting tools 0.07 0.10 0.04

Lack of competencies 0.10 -0.12 0.21 0.06

Fear of lock in 0.04 0.08 -0.15 -0.03 0.03

Refusal from developers 0.09 0.15 -0.01 0.07 0.11 0.08

Refusal from management 0.18 0.02 0.15 0.15 0.32 -0.01 0.22

Cost of supporting tools 0.02 0.15 0.04 0.36 -0.04 0.38 0.07 0.03

Not flexibile enough 0.01 0.12 0.02 0.09 -0.08 0.20 0.13 0.04 0.18

Table 2.10. Correlation of potential problems.

69

Chapter 3

Modeling adoption in a small
company: the Trim case-study

In this Chapter we investigate first time adoption of MDD in a small company.
Results of this research were published in [Tomassetti et al., 2013a]. It was a joint
work realized with Marco Torchiano, and Lorenzo Bazzani.

Results of the work presented in this Chapter contributes to answer the thesis
research question RQ A.4.

This research presents the knowledge and experience acquired trough the process
of establishing MDD practices within a small Italian company. Special attention
has been devoted to project constraints, perceived risks, and relative mitigation
strategies. Moreover the study evaluates how the introduction of the MDD approach
was received by different stakeholders. In particular a structured questionnaire was
the instrument used to reveal and collect the perceptions by different roles involved in
the MDD adoption process. The case study considered development of applications
conforming to a prescriptive architectural framework, which addresses a complex
multi-tier architecture; the solution aims at describing component composition while
avoiding both repeating tasks and writing awkward configurations.

3.1 Introduction

The MDD family of approaches has been widely adopted in the industry with differ-
ent gradations and we have reports of the experience acquired in large organizations
(e.g., [Baker et al., 2005, Hutchinson et al., 2011a]). As far as small companies
are concerned little empirical or even just anecdotal evidence is available in the
literature.

Our goal is to investigate the reasons for success or failure for MDD adoption in
small industrial contexts. In particular we focused our attention on two aspects: (i)

71

3 – Modeling adoption in a small company: the Trim case-study

the potential risks and the associated mitigation strategies, (ii) the overall perception
by the different stakeholders. In this work we are specifically considering the initial
reception and the effects of deploying for the first time an MDD solution in a small
company.

As far as the risks about adopting MDD are concerned, from a single case study
it is not possible to derive a statistically based picture, although by relying on the
managers experience we were able to get a clear idea of the perceived risks. It is
important to focus on the perceived risks because they, even though possibly not em-
pirically grounded, are typically responsible for early rejection of MDD approaches.
Moreover while the promises of MDD are known, we could not find in the literature,
despite of our best effort, an analysis of risks and motivations that cause companies
to fail or abandon adopting MDD. A report about the perceived risks emerged while
designing and implementing a MDD solution and the lesson learned about coping
with them, apparently represent an important contribution to the field.

Furthermore the success of MDD practices adoption depends significantly on
how different roles subjectively appreciate them, because participants’ commitment
represent a key factor. A questionnaire (see Table 3.1) administered to all the
participants to the project allowed us to assess the appreciation and perception
from different stakeholders’ perspective.

The research we present here was conducted in the context of a technology trans-
fer initiative involving the Softeng group at Politecnico di Torino and a small ICT
company (Trim srl). The main goal of the collaboration was to design and im-
plement a MDD solution based on a Domain Specific Language (DSL) and the
supporting tools. In particular the DSL is used to describe the structure of enter-
prise applications, realized in conformance with a prescriptive reference architecture
composed by seven different layers. The DSL allows designing how the different
components are linked together, in order to realize the application, and defining
the data structures exchanged between the layers. By using instruments from the
Eclipse Modeling project we were able to realize the supporting tools in a short
period and with a small effort (circa 64K lines of Java code developed in 5 months
of full-time work by one of the academical authors of the paper). Moreover, we
realized an integrated environment by combining such tools with the Eclipse Java
IDE used at the company.

The main contributions of the chapter are: (i) an examination of the main risks
perceived by SMEs in adopting an MDD solution, (ii) an analysis of the risk mitiga-
tion strategies adopted, (iii) an investigation of the acceptance of the MDD solution
by different stakeholders.

In the remainder of the paper Section 3.2 first presents the project considered
for the case study, then Section 3.3 gives an overview of the devised MDD solution,
Section 3.4 presents a risk management perspective on the MDD adoption, Section
3.5 discusses how different stakeholders accepted the new approach, Section 3.6

72

3.2 – Case Study background

!""#$$
%&'&()*+,-$

./0$ "1*'+)1$ 2&3&41*$ %"5$

67(+31(($
!89,8313-$:%6$!83-*8;;1*$

Figure 3.1. Layers of the case study architecture

summarizes and compares related works, and finally in Section 3.7 we draw the
conclusions.

3.2 Case Study background

Today common enterprise applications comprise many layers [Singh et al., 2002]. At
the bottom we almost always find a relational database and the code needed to deal
with it (Data Access Objects or DAOs). At the top lays the presentation layer (i.e.,
JSPs when the chosen technology is Java). In the middle we can find a variable
number of layers composing elementary services, dealing with transactions, playing
the Model or the Controller roles in the Model-View-Controller (MVC) pattern.
The prescriptive architecture (named Financial Value Chain or FVC) involved in
this work is no exception being composed by seven different layers. Those layers are
reported in Figure 3.1.

Each layer brings into the project a different technology. In addition specific
technologies are required to let the layers communicate while preserving abstraction.
A common choice in a Java-based technology stack is to adopt Spring to manage
dependency injection. Knowledge of several different technologies is required to
deal with a such varying spectrum of libraries and frameworks. In a small company,
counting a small number of developers, it could be difficult to either find or build
this knowledge. There is a certain amount of code and configuration that does
not implement any business logic but it is required just to realize the technological
infrastructure, e.g., the composition of different elements and the communication
between layers. We refer to it as architectural code as opposed to the business logic
code. The architectural code and the related configuration often happens to be
repetitive and as consequence error-prone [Sutcliffe et al., 1999].

73

3 – Modeling adoption in a small company: the Trim case-study

3.2.1 Motivations for MDD

In the context of the project the company had to use a complex multi-layer ar-
chitecture. Development for this architecture involved a large amount of repetitive
and error prone tasks which demovatived the developers, moreover only developers
with a large skillset were able to work on this architecture. For these reasons we
decided to encapsulate technological details related to the architectural code in the
transformations. In this way developers could focus on the business logic.

3.2.2 Project constraints

The design and implementation of the MDD solution we carried on was tailored for
the specific needs of a company, therefore it had to confront with a set of different
constraints, the most relevant being: i) since the software development project,
where the approach had to be put in trial, involved several companies, it required
the integration of components developed by 3-rd parties; ii) the client imposed quite
strict rules for source code and configuration files that the generation phase had to
adhere to; iii) the company management preferred the use of protected region with
respect to other technical solutions.

Concerning the protected regions, the preference was mainly due to the fact
it allowed to obtain generated code very similar to manually-written code. Such
similarity, in case the MDD solution be abandoned, would make the fallback option
to traditional development techniques easier and less expensive. An alternative to
protected regions was to adopt specific strategies to separate generated code from
manually written code (e.g., aspect oriented programming). These solutions while
offering advantages would produce code different from the one produced by the
standard development method. While for mature adopters of MDD the usage of
protected-region could be considered an anti-pattern, in this case it was considered
to be a pragmatic compromise increasing the confidence of the adopters.

3.2.3 Perceived risks

Due to the lack of previous experience in MDD at the company, we ended up de-
bating a set of perceived risks, that are quite common among new MDD adopters.
We conducted an open discussion session with the managers of the project aimed to
elicit such risks; we wrote and refined a list of risks and eventually we validate the
list back with the managers. As a result we could summarize four main risks:

R1) Tool rigidity: it is very likely that new development’s best practices appear
in the project lifetime, the tool could not be able to evolve to address them.

74

3.2 – Case Study background

R2) Lack of developer adoption: the tool and the change in the development
process could not be accepted by developers. They could feel like they are
losing control or their skills are considered less valuable because of the MDD
adoption.

R3) Solution lock-in: the company, at its first MDD experience, in case of failure
could not be able to switch back to the previous (MDD-less) development
process for the whole project or for the development of a single component
with a limited effort.

R4) Application evolutionary inertia: the context of the application is doomed
to rapidly evolve, both in terms of development technologies and as new do-
main and application requirements; while the company knows how to cope
with such evolution using standard development, the fear is that MDD could
make it more difficult. The request is that adopting the tool should not make
reaction times longer but equal or possibly shorter than conventional develop-
ment.

3.2.4 Scope of the solution

For the development of the lowest layer of the prescriptive architecture (FVC) an
Object-Relational Mapping (ORM) was already in use. In particular the ORM
used was iBatis and it was used with a companion tool, iBator, which analyzed the
database schema and generated DAOs and configuration for iBatis.

The results obtained using iBatis were satisfactory so we decided to design an
MDD solution that did not involve the database and DAO layers but instead was
able to integrate with those layers as implemented using iBatis and iBator. Being
the first MDD adoption trial at the company we wanted to focus only on the most
problematic layers, where it was easier to obtain a significant improvement.

The company preferred to not adopt MDD for the presentation layer because
they wanted their developers to maintain full control on this particular aspect of
the application. Therefore the MDD solution was designed to cover five out of the
seven layers of the FVC architecture.

The design of the MDD solution was driven first of all by pragmatism: while in
an environment with experience in MDD usage we would have suggested a different
approach in this case we had to look for a compromise between best practices and
risk perceived. For this reason on one side we chose to focus on a subset of the layers
and in particular on the ones where we could provide a more profound improvement,
on the other hand we accepted the usage of protected regions which are considered
an anti-pattern from more advanced users. In this particular case instead they
helped to increase the confidence of the adopters because they had the possibility

75

3 – Modeling adoption in a small company: the Trim case-study

to insert custom code as it was needed. We advocate that the MDD approach has
to be tailored on the base of the maturity of practitioners.

3.3 Case Study solution

The MDD approach adopted for this project is summarized in Figure 3.2: it is based
upon three different model levels. The first one, the domain model, is defined by the
user by means of a textual DSL. The second one, the intermediate model, is built
reworking information extracted from the first model and from binary components
using reverse engineering. Finally the third model is made up of the set of Java
source files and XML configuration files generated.

The user defines a model of the architecture, using the DSL syntax. In the model
he specify how components in the various layers are structured. Such a model is
then translated by means of an automatic model-to-model (M2M) transformation
to an intermediate model. From this intermediate model another transformation
occurs, this time a model-to-text (M2T) transformation, producing as output a set
of textual files: Java source code and XML configuration files.

The goal is to describe the domain model through a flexible DSL, so that the
language can be used to describe a broad range of situations and at the same time
be particularly concise resorting to common cases when it is possible. Conversely
flexibility is not a goal for the intermediate model since it is used as the basis
for the generation and it is never modified manually. Considering that the DSL
has to be evolved to provide a better user-experience and the M2T transformation
could have to be adapted to address technological changes the intermediate model
is useful to somewhat absorbe those changes without them being propagated to
the other extreme (i.e., a change to the DSL could in the worst case affect the
intermediate model but not the M2T transformation, while a modification to the
M2T transformation would not affect the DSL). Moreover the intermediate model
is designed to contain completely specified information, which simplify the M2T
transformation.

The solution devised combines tested practices and techniques into a customized
toolset. It represents, we believe, a typical case of MDD adoption in a small com-
pany, so it lends itself as an exemplar case study.

3.3.1 Domain model

We opted to support a textual notation for our DSL and not a graphical one due to
ease of development of tools with advanced features [Völter, 2009].

One of our goals was to achieve a cost of switching as low as possible for the Java
programmers already involved in the project; the use of a textual java-like syntax
promised to be easier to learn than a graphical one. We considered that one of the

76

3.3 – Case Study solution

DSL
M2M

Intermediate
Model

M2T Artefacts 3rd party
components

Rev
Eng

Figure 3.2. Models and transformations

main cost factors is the time needed for developers to learn the new environment
and become proficient with it, consequently we decided for a notation as close as
possible to the notations already used by the clients of the proposed MDD solution,
who are mainly Java developers. In addition we considered concurrent engineering
an important feature and while there are several tools supporting concurrent devel-
opment for a textual notation (i.e., tools to execute differences analysis, automatic
merge and so on), the adoption of a graphical notation would be more problematic
[Leveque et al., 2009, Völter, 2009].

The DSL language we designed is used to define the structure of a stack of
components adhering to the FVC architecture and it is called FVCS (for FVC-
Stack). Its syntax has been defined in agreement with two driving principles: i) the
whole solution is designed to be immediately familiar to its intended users, which
are Java programmers, so we designed the DSL syntax to resemble Java as much as
possible. ii) The language resorts on some very common cases and for this reason a
set of ”shortcuts” are provided. We report a small script to give the feeling of the
language. In the project circa 1.0K lines of DSL code were written.

// import binary components

jar "path/binaryComponents.jar"

package it.trim {

data in Abc {

string name;

date start;

date end;

}

data out ADataOut {

int total;

}

77

3 – Modeling adoption in a small company: the Trim case-study

// implicitiyly refers to data in Abc

businesscmp Abc {

dao importedDao

out ADataOut

}

service wrap Abc

ejb MyEjb {

Abc as "getAllXyz"

}

model MyModel {

allfrom ImportedDao

SomeOtherDao *;

}

}

3.3.2 The intermediate meta-model

The role of the intermediate model as a basis for the final generation of the applica-
tion model (represented by the generated artefacts) requires managing the different
cases for every declaration kind and making explicit all the information provided im-
plicitly at the domain model level through the DSL. The overall generation can be
split in two transformation phases: i) a M2M transformation aiming to explicit infor-
mation, ii) a M2T transformation which has to translate information to the specific
target technology. By adopting the intermediate meta-model we achieved greater
flexibility and simplified the M2T transformation [Völter, 2009]. The intermedi-
ate meta-model is composed by roughly one sub-meta-model for each component
kind. We report in Figure 3.3 the portion of the intermediate meta-model used to
represent one of the layer of FVC: Business Components.

3.3.3 Generated artefacts

From the intermediate model by means of a M2T transformation two different kinds
of artefacts are generated: Java source files and Spring XML configuration files.
Java source files represent the implementation of the components defined using the
DSL. In general a single component may give rise to one or more Java files. For
some layers of the FVC architecture a configuration file may also be required to
provide information relative to the whole set of components pertaining to that layer.
Depending on the nature of the generated component it can be completely generated
or it can be partially generated. Source files partially generated contains all the
architectural code and let the user insert the custom logic into well-defined protected
regions.

78

3.3 – Case Study solution

BusinessComponentCollection

BusinessComponent
- daoClass: String
- daoMEthod: String
- daoMethodInputType: String
- type: componentType

1

0..*components

Converter
- returnList: boolean
- dataIn: String
- dataOut: String

0..1
 converter

CommonProperties

Filed
-filename: String

Customizable
-customLogic: boolean

Named
-name: String

Packaged
-package: String

1

0..*
converters

Figure 3.3. Excerpt of the intermediate Model

Configuration files define how different components are related and their scope
is project-wide. There are three different configuration files, each of them contains
configuration relative to a subset of the FVC layers. They are Spring XML config-
uration files: one is related to business components, the second one to services, the
last one contains managers and controllers definitions.

Given the definition of a Business Component the application model consists of
the following files:

• a Java class for the Business Component. It contains the class corresponding
to the business component with the setter for the DAO and the field to hold its
reference, the process method that could be completely specified (for wrapping
Business Components) or just the skeleton containing a protected region in the
general case;

• a Java class for the related Converter. The declared class contains methods to
convert an ORM to a Data In and a Data Out to an ORM. ORMs are classes
representing data in the database layer in a OO context;

• a portion of an XML configuration file for the Business Component and the
related Converter providing information used by Spring to perform dependency
injection.

79

3 – Modeling adoption in a small company: the Trim case-study

3.3.4 Supporting tools

To implement our MDD solution we used Eclipse Modeling [Budinsky et al., 2003].
In particular we used these components of the bundle: the Eclipse modeling frame-
work (EMF), Xtext, Xtend, Xpand.

EMF is a framework to define data models and meta-models, the structures of
data models. In particular meta-models can be defined using XML, Java classes
or modeling tools. The framework permits not only to define the structure of the
models but also constraints that can be used to validate the model. EMF provides
also a language called Ecore to define meta-models. Ecore is also a meta-model
expressed in the means of itself. EMF is the technology that permits inter-operation
between the different tools in the Eclipse Modeling Project. Every other tool in the
project is able to operate with EMF models and meta-models.

XText is a DSL framework. It has to be fed with a DSL’s syntax definition using
an extended Backus-Naur Form (BNF). Starting from this syntax definition XText
produces a parser, an EMF meta-model, and the skeleton of an editor. The parser
is able to read a text file conforming to the DSL syntax provided and create from
it a model referring to the generated meta-model. The editor will be specifically
targeted at the DSL defined and will be provided as an Eclipse plug-in. Both the
parser and the editor though fully working need to be customized by specifying
validation rules, how to perform auto-completion, and many others refinements.

XPand is a template language able to consume EMF models to produce text files.
XTend permits to create reusable definitions performing simple manipulations of
EMF data. XTend is often used together with XPand to modularize some definitions
that are reused many times in an XPand template.

One of the requirements was the possibility to re-use components developed with
traditional techniques according to the FVC architecture but not using the designed
MDD facility we developed. The first reason is that we want to able to re-use
components developed by other companies that did not adopt MDD techniques.
This is important because Trim (the company involved in the case study) had to
cooperate with other companies working on common projects. As second point in
this way we are not tied up to develop every component of every level with the MDD
solution. If a specific case arises that is hard to model with the current solution and
the effort necessary to enrich the solution is a lot higher than the outcome that
very specific component can be developed outside with traditionally techniques and
then be referred in a FVCS file, i.e., to build a component in the upper layer. To
satisfy the requirement the solution is designed to be able to re-use directly compiled
components consisting of both a directory containing class files or a JAR.

The module devoted to reverse engineering is able to deal with both cases (a
directory of class files or a JAR). This module analyses classes looking for imple-
mentation of components of a certain FVC layer by looking at the class name, at

80

3.4 – Risks management

the interfaces implemented and at the superclass of the examined element.

3.4 Risks management

The development of the MDD solution for the FVC architecture, through a trial
and error process, allowed us to better understand the key factors and the resulting
benefits in developing and deploying such kind of solution in a small company with
no prior experience about MDD. We first present lessons learned and later we discuss
how they can be used to mitigate risks presented in Section 3.2.2.

3.4.1 Lessons learned

L1) need for intermediate level: we realized quite early in the project the
necessity to introduce the intermediate meta-model. It proved to be very useful to
prevent changes happening at one of the ends of the MDD solution to spread across
the stages of the solution itself and affect the other end. This was important because
during the development of the project we introduced many changes in the DSL
syntax that were made as consequence of feedback from users. In most situations
changes did not affect the intermediate meta-model but they were absorbed by
the M2M transformation. Due to some changes we needed occasionally to slightly
adapt the meta-model for some components but we never needed to adapt the M2T
transformation due to changes in the syntax. The insulation role of the intermediate
meta-model was also standing for changes coming from the technology side. As
consequence both the syntax and the technology side were able to be improved and
adapted separately so that we were free to let the language evolve to become more
concise and at the same time we could adapt the way we produced the artifacts to
meet the changing technical requirements.

L2) Convention over configuration: to adopt the principle known as ”con-
vention over configuration” lead to concise scripts. Concise scripts are good for
many reasons: they are faster to write and they are faster to understand, which
is also more important. They contain no redundant information so the reader can
concentrate just on the particular cases, where something is not acting as usual.

L3) 3rd party integration: the ability to include components already devel-
oped in the MDD solution is critically important in industry environment. First of
all it permits to not waste precedent investments and it permits a gradual transi-
tion from previous techniques to MDD. There is also another advantage: it brings
confidence to be not locked in the MDD solution. If it is always possible to build
components with traditional techniques and then integrate them in the models it
will reduce greatly the risks involved in MDD adoption. These lessons confirm the
findings presented in [Hermans et al., 2009], where several respondents wished the

81

3 – Modeling adoption in a small company: the Trim case-study

opportunity of being able to import pre-existing models. It also permits a gradual
adoption of the MDD approach, one of the important factors reported by [Hutchin-
son et al., 2011a].

L4) DSL flexibility: the MDD solution and in particular the DSL have to be
flexible enough. In every technique involving modeling a certain amount of rigidity is
assumed, MDD solutions needs to rely on archetypes and repeated patterns. Usually
designers of MDD solutions tend to enforce too much, to limit what developers can
do using the tools they create. A common pitfall is to envision in the small details
how the whole solutions will be used and how the developers will have to implement
the applications. This brings developers to feel unable to adapt their work tools
to their way to execute the job. There is a tendency to consider developers as just
another tool of the MDD solution. It proved to be more successful to think the
other way around: developers are professionals and MDD designers just provide
better tools that have to fit their needs and their own way to organize their work.

L5) Developer’s involvement: developer’s commitment is essential to obtain
a successful and concrete adoption of the MDD solution. Our experience suggests
that in order to obtain that developers have to be involved in the design phase
considering their feedback as valuable. If developers feel that MDD adoption is
going to be forced or that the solution is not flexible enough to adapt to their needs
they are likely going to misuse it, causing to reduce or void the benefits provided.

3.4.2 Risk mitigation

The potential risk R1 (tool rigidity) has been mitigated by both L1 (need for
intermediate level) and L2 (convention over configuration). The presence of an
intermediate level allows adjusting the domain model and the code generation inde-
pendently, thus achieving an high evolvability of the tool. Moreover the extensive
use of conventions loosen the coupling among the modules of the tool, the result
being a more maintainable system.

The possible lack of developer adoption (R2) was one of the main concerns
during the development of the MDD approach. We learned that it can be mitigated
in different ways: (i) relying on convention instead of configuring the utmost detail
(L2) provides conciseness and relieves developers from writing repetitive patterns,
(ii) the flexibility of the DSL (L4) allows the developers to easily work with the
language, and (iii) the involvement of the developers (L5) in the design of the MDD
solution ensured a high rate of adoption.

One of the fears of the company was switching to MDD, and then realizing it was
not suitable for the project, and eventually ending up locked in the solution (R3).
The ability to integrate 3rd party components (L3) mitigated significantly this risk:
it is alway possible to develop directly in Java any ”problematic” component and
integrate it into the system.

82

3.5 – Acceptance assessment

An important competitive advantage in software development consists in being
able to keep the pace with technological evolution. It was not clear whether MDD
could jeopardize this ability of the company; the risk is to increase the inertia toward
the evolution of the application to adopt new technologies (R4). The existence
of an intermediate level (L1) let the generation phase to evolve easily. Moreover
the extensive use of conventions (L2) avoids over-specified models by introducing
technology-dependent information, so mitigating the risk of evolutionary inertia.

3.5 Acceptance assessment

The reception of the MDD approach was evaluated by means of a questionnaire
which was addressed to the different roles involved in the project who are employed
at Trim. The goal was not to evaluate our solution but how participants in differ-
ent roles reacted to MDD. The questionnaire was carefully developed by the two
academical authors of this paper.

This section presents first the questionnaire, later the answers divided by topic
are analysed.

3.5.1 Questionnaire definition

The survey was addressed to the Trim’s personnel involved in the project. The MDD
solution was developed at the Politecnico di Torino with the constant feedback of
the company. Later the tool was used and maintained at Trim. In particular there
were five Trim’s workers involved and all of them accepted to fill in a survey tailored
for the specific role they covered in the project. One of the workers is the manager
(who is also a co-author of this paper) who contributed to develop the initial design
of the MDD solution. A second one is a software architect with a broad and deep
technical culture: he contributed with technical comments to the initial design and
he was appointed with the duty to maintain and evolve the tools. The third worker
is the project manager of the projects which used the tools since the first pilot and
later in production. Finally there are two developers involved in those projects.
The objectives of the questionnaire are to evaluate the results and in particular
to ascertain possible deficiencies of the proposed approach, thus providing insights
about the reception from the different point of views.

We adopted the participant-observer case study [Yin, 2002] because we needed
the feedback from the personnel involved. Because we are not evaluating our ap-
proach to demonstrate its efficacy we consider the potential bias caused by the
interest in the project to be not relevant.

Questions are divided into three groups which focus on different aspects of the
project. The first one is about results evaluation (questions R1 through R11), the

83

3 – Modeling adoption in a small company: the Trim case-study

second one is about acceptance (questions A1 to A5) and finally the third one is
about development process changes (questions P1 to P6). Overall we formulated 22
questions that are reported in the leftmost column of table 3.1. While the question-
naire was originally written in Italian, we present here the corresponding English
translation. The questionnaire included both closed (C) and open (O) ended ques-
tions; the second column of the table describes the type of question. The close
questions have been formulated in the form of assertions with which the respondent
had to express his agreement according to a five point Likert scale [Oppenheim,
1992]: Strongly disagree (1), Disagree (2), Neither agree nor disagree (3), Agree (4),
and Strongly agree (5). The typical encoding, used also in our analysis, is the integer
number reported in parenthesis.

3.5.2 Discussion of responses

Table 3.1 reports, for each question, the answers provided by the different roles.
Since the set of questions administered varied according to the role, there are combi-
nations of role and question that have no response, such lack of answer is represented
by void cells . For close-ended questions the cell contains the level of agreement en-
coded with an integer from 1 to 5 as shown above. The check mark, for open-ended
questions, indicates that the question was administered to that role, who provided
an answer (the full text of the responses is available in Appendix 3.8). When the
respondent did not provide any answer we report ”NA”. In particular developers
used the possibility to not give an answer in two different cases because they were
less involved into the project with respect to other roles and the changes due to
the adoption of the MDD solution affected them marginally as we will report while
analyzing answers on process changes. They were less involved because they were
working mainly on the presentation layer, which is the layer excluded by the MDD
solution. Anyway their role requires to use components generated by our solution
and by means of specific questions we wanted to verify that its adoption is almost
transparent to them.

3.5.3 Results evaluation

Typically when introducing modeling solutions there is the concern to cause rigid-
ity to the development process: we rest reassured that the tool was in no-way a
limit during the development (R1). The tool managed to reduce repetitive work
(R2) although not to completely eliminate it. Anyway the reduction was sufficient
to shorten significantly the development times (R3). The solution was considered
also a tool useful to design globally the system and maintain an overview of the
whole application (R5). As far as defect reduction is concerned (R4) the answers
indicate that defects were not reduced by the adoption of the solution. First we

84

3.5 – Acceptance assessment

Role
Gr. Question O/C M SA PM D

R
es

u
lt

s

R1 The tool constituted a limit in any way
during the development

C 1 1,1

R2 Tool usage reduced repetitive work C 4 4,4
R3 Tool usage reduced development time C 4 4 4 NA,NA
R4 Tool usage reduced the number of defects

in the developed applications
C NA 3 3 NA,NA

R5 The FvcGen approach supports the de-
sign phase and provides an overview of
the system

C 5 4

R6 The approach improved maintainability C 3 3
R7 The tool is easy to use C 4
R8 The tool requires a quick learning phase C 4
R9 The Fvcs DLS syntax is easy to learn C 4
R10 Which aspects would you consider as crit-

ical to realize a similar project?
O X

R11 How could the solution be improved? O X

A
cc

ep
ta

n
ce

A1 Using the tool is professionally stimulat-
ing

C 4 4 4,4

A2 Which were the major resistances to the
adoption?

O X

A3 What could be done to favor the tool’s
acceptance?

O X

A4 Which are the most critical aspects for the
adoption of a MDD solution in an organi-
zation?

O X

A5 How do you evaluate the adoption for the
solution’s users?

O X

P
ro

ce
ss

P1 The adoption of FvcGen changed the way
you work

C 1,1

P2 The transition to the new development
process has been quick

C 4

P3 The transition to the new development
process has been very easy

C 3

P4 Which are the critical aspects for the
adoption of FvcGen?

O X

P5 Was the development project changed by
the introduction of FvcGen? How?

O X

P6 Introducing FvcGen do the competences
required for developers change?

O X

Table 3.1. Answers to acceptance assessment questionnaire for different roles:
M - Manager, SA - Software architect, PM - Project Manager, D - Developer. O/C
= Open/Closed question. The numbers reported refer to a Likert scale ranging
from 1 (Strongly disagree) to 5 (Strongly agree).

note that respondents were mainly concerned with post-release defects, and we in-
terpret the result as an indication that architectural errors were not reduced. We
believe that low-level errors (typically those caused by misconfiguration or mistypes)
quite common in hand-written code are eliminated by our solution. Such defects
are show-stoppers and are routinely fixed before release causing a slow-down in the
development and annoyance for developers. Though the company does not collect
measures at this level and therefore no evidence is available to support this hypothe-
sis. Apparently there is not a particular advantage in terms of maintainability (R6).
This outcome can be explained by observing that the project has not entered the

85

3 – Modeling adoption in a small company: the Trim case-study

maintenance phase yet; therefore the answer to the specific question was a conser-
vative one. There is a set of questions (R7, R8, R9) specifically addressed to the
principal user of the tools (the Project Manager) and in particular of the FVCS
language. The answers confirm that the tools and the language were practically
usable and quite easy to learn. These characteristics were of course a key factor
for the choice of Trim to adopt the solution. Finally analysing answers to the last
questions we can get more general advice. The Software Architect considered the
approach used (R10) to be correct and repeatable for similar applications, although
he expresses doubts about the applicability of a similar approach to architectures
that do not exhibit such a rigid multi-tier structure. The Project Manager instead
points out that the solution could be improved (R11) by making it more easily de-
ployable and reducing dependencies issues. As a side note he indicated, also during
the development of the project, the necessity to increase flexibility e.g. by making
the destination of generated artefacts for different components and the definition of
Java package names directly configurable.

3.5.4 Acceptance

Because we consider the solution acceptance from all roles working at the company
an absolute key-factor for the success of the project we realized a set of questions
specific for this topic. We first asked the technical figures involved to find out if the
considered this experience as professionally interesting (A1). We obtained positive
answers by all roles. Then we asked the Manager and the Software Architect for
their considerations. The Manager considers an hindrance to adoption (A2) the
fact the developers tend to dislike technical solution proposed by external subjects.
In this case they accepted it because they could see concrete benefits early. As a
second point some issues in the tools deployment to different Eclipse installations
were considered annoying. He suggested in order to favor the adoption (A3) to
organize lessons on the use of the solution. Moreover we asked for advices on the
adoption not specifically tailored to this experience. The Manager affirmed that the
MDD solution should be to reused across other projects (A4). He specify that could
be not always possible because, while the customer of this project would appreciate
the adoption of a similar solution, other customers could ask the company to use
a specific development approach not based on the MDD solution. The Software
Architect considered the reaction of the solution users (A5) positive but he suggested
that it could be subject to personal tastes; he elaborated further that while the
people involved in the project appreciated it, it could be the case that developers
prefer to develop manually most of the code in order to maintain strict control.

86

3.6 – Related work

3.5.5 Process changes

We also wanted to evaluate how the development process was affected by the intro-
duction of MDD in a small company for its first time and which were the changes. We
found that transition was quite smooth: quick (P2) and with no particular difficulty
(P3). As far as developers are concerned, since their work is essentially centered in
the presentation layer, the adoption of the MDD approach is almost transparent to
them (P4) and therefore their job is not affected (P1). A major difference emerged
for the Project Manager: he is now able to do on his own a greater amount of
work; in particular he can develop, by means of the tools, the whole back-end of
the applications (P5). This is partially justified by the fact that he is ”shielded”
by many technical details related to the specific technologies involved and as result
he is less concentrated on technological aspects and can spend more attention on
the business logic. Finally, prerequisite on technical competences for the developers
involved in the project can be relaxed (P6). This represents an important benefit
for the company that can hire workers that are not necessarily expert in every single
technology of the architectural stack.

3.6 Related work

Insights on the diffusion of MDE are reported by a large study from Hutchinson et
al. [Hutchinson et al., 2011b] conducted by means of questionnaires and interviews.
Another study about MDE diffusion (limited to Italian companies) was presented in
the previous Chapter. Those studies are interesting to understand the phenomenon
at large but do not reach the level of detail that case studies and experience reports
permit to achieve.

While the literature includes several experience reports on MDD adoption, most
if not all of them concern studies in the context of large industrial setups and
companies with a medium to long experience in the field.

A notable example is Baker et al. [Baker et al., 2005] who report on the com-
petencies developed at Motorola after 15 years since the adoption of MDE. In their
experience the major obstacles in adopting MDE stem to the lack of a well-defined
process, lack of necessary skills and inflexibility in changing the existing culture. An-
other account from a 5-years project at the same company can be found in [Foustok,
2007].

Fleurey et al. [Fleurey et al., 2007] report on the 10-years’ experience with MDE
developed at Sodifrance; the focus is on migration projects, where the benefits w.r.t.
conventional techniques can be observed after an initial period, e.g. the first code
could be delivered only after 10 months from project’s beginning. In addition they
present a cost-benefit analysis and suggest the presence of profitability threshold in

87

3 – Modeling adoption in a small company: the Trim case-study

terms of project size.
Hen-Tov et al. [Hen-Tov et al., 2009] describe a project with enterprise software;

while the software category is similar to our case study, their approach requires an
initial development effort of 10 man-years.

Hutchinson et al. [Hutchinson et al., 2011a] report lesson learned from adoption
of MDE in three large multinational companies (a printer company, a vehicle man-
ufacturer and a manufacturer of electronic systems). They conclude that important
enablers for the succes of MDE in those large companies were: adopting a progres-
sive and iterative approach, obtaining organizational commitment, motivating users,
organization flexibility from the whole company and the presence of a business focus
motivating the adoption of MDE.

The above reports concern MDD solutions that require a very long setup time;
one article from MacDonald [MacDonald et al., 2005], which analyzes development
through MDD of a component for a legacy systems, describes an approach requiring
a low initial development effort. We think that small-companies have to choose a
different way to MDD adoption than large ones and it seems to be neglected by the
current research trend. For this reason we try to adopt some research approaches
used in large-companies and adapt them to a case study undertook in a small one.

There are other works that studied MDD through a survey as we did. For
instance, a survey on the success factors of DSLs adoption conducted on a large
set of projects spread among many different companies [Hermans et al., 2009]. The
scale factor difference between our work and that one was a crucial aspect affecting
the way we designed our questionnaire and how we analyzed the results. Due to
reduced number of people involved in the project we could not perform statistical
analysis. Moreover our work differentiate the people involved in the survey by their
roles while [Hermans et al., 2009] does not. Another work is from Staron [Staron,
2006] who proposed a questionnaire to personnel of two companies considering MDD
for adoption, one having already undertook a pilot, the other not yet. It emerges
that the three most important factors influencing the decision for adoption are i)
availability of modeling tools, ii) cost of introducing the modeling technique to
the process, iii) cost of creating models during software development. Once again
companies considered are really large organizations. Shirtz et al. [Shirtz et al., 2007]
reports considerations about successful way of convincing management to adopt
MDD, their considerations on this topic are not the central part of the paper and
are anyway related just to large companies.

Finally a review of experiences on MDE applications from Mohagheghi and
Dehlen [Mohagheghi and Dehlen, 2010] contains considerations on effects on code
quality (but not supported by data) and productivity while we are trying to perform
an analysis of the effects on the development process and reactions by different roles
involved.

After we performed this research a new article on application of MDD in small

88

3.7 – Summary

companies was published [Cuadrado et al., 2013]. The authors agree with us on the
lack of research of MDD deployment in small companies. The motivation is that,
while the problems encountered from small companies are typically the same of the
large ones, the way to face them are rather different because different resources and
different priorities characterize the companies. In their work Cuadrado et. al used
two case-studies performed at two different companies. While results were positive,
the companies did not fully embraced MDD as consequence. In particular small
companies have to consider with attention the cost of developing MDD solutions
and decide if their worthy for the task at hand.

3.7 Summary

In this chapter we discussed the adoption of a MDD solution in a small-company
with no prior experience with such techniques. We described the specific context and
reported and motivated the principles applied to design the solution. In particular we
stressed the importance to deliver high-quality supporting tools in order to guarantee
an acceptable productivity. In a small company it is particularly important to
achieve early benefits as result of small initial investments. In order to attain such
goal we strived to (i) build an environment as familiar as possible for the prospective
users and (ii) avoid any rigidity that could hinder the reactivity to requirements or
process changes, which is one of the competitive advantages of small companies in
respect to larger ones.

We investigated the perception of the solution by the personnel involved in the
project. We could confirm the good results obtained and we gained considerable
insight about deficiencies and ways to improve our approach. The respondents em-
phasized two main key success factors: very high-quality tools and flexibility. While
these aspects were considered satisfying in this case study, they are so important to
need still more attention.

Given the cross-sectional nature of our study, we did not consider long term ef-
fects. In particular no evidence could be found regarding the impact of the proposed
MDD solution on maintainability and defect reduction: we plan to investigate more
these aspects in future research.

As future work, we plan to evaluate again MDD approaches in small companies
in the context of different kinds of applications investigating more in depth process
changes.

89

3 – Modeling adoption in a small company: the Trim case-study

Item Question
Role Response
R10 Which aspects would you consider as critical to realize a similar project?
SA The current version is suitable for the development of multi-tier applications, therefore for such kind of projects

FvcGen does not bring any criticality. On the other hand, if the architecture were less layered then the use of
the instrument as-is could introduce some issues. A further re-engineering of the tool could be required.

R11 How could the solution be improved?
PM Right now it appears to be too constrained both in terms of generated code and used libraries. It was very

hard to make it compatible with current work instruments (e.g. different versions of Eclipse and Ant)

A2 Which were the major resistances to the adoption?
M In general developers are not likely to accept technical decisions taken by others. In this case, though, who

used the tool immediately gained real benefits. The problem, which could limit its adoption in future projects,
is the complexity of the installation procedure, due also to the several version of Eclipse.

A3 What could be done to favor the tools acceptance?
M No idea about the tools. Though we could organize training sessions.

A4 Which are the most critical aspects for the adoption of a MDD solution in an organization?
M For sure process and technologies ought to be standardized. For a company like ours, this is very difficult since

customers often impose their techniques. In a context such as our current banking customer I see the adoption
of this technique as very feasible without particular criticalities (but those related to natural resistance towards
change).

A5 How do you evaluate the adoption for the solutions users?
SA Positively, although it is heavily dependent on the person that use it (some are more productive when they

work according their habits, others are more open to innovation)

P4 Which are the critical aspects for the adoption of FvcGen?
D I did not use it directly (both developers replied in this way).

P5 Was the development project changed by the introduction of FvcGen? How?
M Changing the process was exactly the goal of this collaboration. In particular we wanted the team to be less

focused on the technological aspects and closer to the business issues. The solution actually collapsed on a
single person the development of the generated components.

P6 Introducing FvcGen do the competences required for developers change?
M Yes. All the generated portion hides precisely the technological complexity.

Table 3.2. Responses to open ended items (translated from Italian into English)

3.8 Appendix - Responses to open ended items

Acknowledgments

We want to thank the personnel at Trim who took time to answer the questionnaire.
We are also grateful to the anonymous reviewers for their comments and suggestions
which helped us to improve this study.

90

Chapter 4

Modeling adoption in large
company: the CSI case-study

In this Chapter we investigate first time adoption of MDD in a large company and
its sourrounding ecosystem. It was a joint work realized with Marco Torchiano,
Maurizio Morisio, Mauro Antonaci, and Paolo Arvati.

Results of the work presented in this Chapter contributes to answer the thesis
research question RQ A.5.

4.1 Introduction

A software ecosystem can be defined as: “a set of actors functioning as a unit and
interacting with a shared market for software and services together with the relation-
ships among them” [Jansen et al., 2009]. We believe that the term market should
be taken in its most general sense: the set of relationship existing between (type of)
actors representing any form of exchange. Typically, in a software ecosystem, actors
exchange software artefacts, services, and of course money. As for a natural ecosys-
tem, also in software ecosystems variations in the behavior of one actor (species)
cause reactions from other actors and alterations of the overall environment. In
such a kind of complex systems both changes originating from the participants or
perturbations coming from external factors (e.g., the economic conjuncture) trigger
chain reactions by many of the actors which take part in the ecosystem; the result is
either the creation of new relations, modification of the existing ones, or destruction
of some of them. Therefore the shape and behavior of an ecosystem as a whole is
extremely difficult to predict and govern.

91

4 – Modeling adoption in large company: the CSI case-study

4.1.1 Context

This work focuses on an ecosystem centered around a large publicly owned or-
ganization, CSI-Piemonte (Consortium for Information Systems), considering the
relations between departments, with ten of sub-contractors and with the customers
(hundreds). CSI-Piemonte (CSI hereinafter) was founded in 1977 with the aim of
promoting the modernization of local administrations by using IT-based tools to
create information services and systems. It focuses on the development and op-
eration of Information & Communication Technology projects for the Piedmont’s
Public Administrations (PAs), providing services for citizens and businesses.

CSI is a consortium with over 100 members, most of which are PAs: the Piedmont
Region, several Provinces, and many municipalities. Other members are universities,
hospitals, and local health agencies. Many of the members of CSI are also among its
customers. Services are developed for many of the PAs of Piedmont which counts
over 4.5 millions of inhabitants distributed across over 1200 municipalities (this high
number is due to the orography of the region).

The goal of this work is to document the evolution of the CSI-centered ecosystem
over a span of 5+ years, during the introduction of a new development technology:
Model-Driven Development (MDD) [Mellor et al., 2003]. The introduction of MDD
started in 2008 and is still in progress. The new technology induced several changes
in the ecosystem, concerning both the role of the actors and their interactions. In
parallel and tightly interlocked with the evolution of the ecosystem we will follow
the evolution of the MDD supporting toolset.

4.1.2 Motivation

The presence of a central catalyst and a shared technology, bringing specific ben-
efits to the different participants are fundamental to create a cohesive ecosystem,
motivating everyone to favor the success of the technology and, as consequence,
benefiting the whole ecosystem.

While the entity at the center of the ecosystem – i.e. CSI – was able to build
this cohesive ecosystem and earn the support of the participants, still, a huge effort
had to be spent to steer the ecosystem and operate a mindset change, winning the
inertial resistances. CSI had to initially spend a huge effort not only developing the
tools but also investing in complementary aspects (IDE integration, documentation,
support, lobbying). However the success in the transition was made sustainable
in the long run by the progressive involvement of other actors that helped in a
increasingly more active way as progressing in the our story.

Creating the fertile pre-conditions and the determination of the steering organi-
zation are however not enough for the survival of the ecosystem. They are complex
systems where entities with possibly conflicting goals and a number of inter-relations

92

4.2 – Method

co-exist. In this kind of environment technology could play the role of the enabler for
a mindset change but many other aspects are crucial and have to be properly con-
sidered: among them we wish to underline necessary competencies, organizational
aspects, economic aspects. In such complex systems, where so different aspects have
to be considered, it is hard to forecast the effects of changes and the long-term re-
sults of actions. This could lead to unanticipated benefits (like the spreading of
MDD competencies in a local area) but to problems as well. We therefore think
that steering actors or simple participants in similar ecosystems could benefit from
a few guidelines, emerging from successful cases of paradigms transitions operated
in software ecosystems.

4.1.3 Organization of the work

The chapter is organized as follows: section 4.2 introduces the method adopted to
conduct the study, section 4.3 describes the evolution from an historical perspec-
tive, section 4.4 analyzes and distills different motifs that characterize the successful
transformation of the ecosystem. Later we discuss the main aspects of the trans-
formation of the ecosystem (section 4.5), then we present the related works (section
4.6) and finally we draw our conclusions (section 4.7).

4.2 Method

The collection of information was carried on over a period of two years starting in
April 2011. At that time a collaboration between the Software Engineering group at
Politecnico di Torino and CSI Piemonte started, which focused on the development
of a model versioning infrastructure to be used for the MDD tool suite.

During the collaboration the researchers became aware of the articulate history
related to the conception, development, introduction, and deployment of the MDD
solution and decided to undertake an additional hermeneutical research effort fo-
cused on the evolution of the ecosystem centered around the MDD tool suite. The
team – the authors of the present work – is composed of a group of academic re-
searchers and a group of industrial members.

The research method adopted in this work is essentially of interpretive na-
ture [Klein and Myers, 1999]. In particular the investigation is based on a single case
study that lasted almost six years, which encompasses several hundreds individual
software development projects.

The collection of materials occurred in several different occasions.

• An initial series of meetings approximately taking place with bi-weekly fre-
quency, they where originally intended to understand the architecture of MDD
tools for the purpose of collecting the requirements for the model versioning

93

4 – Modeling adoption in large company: the CSI case-study

infrastructure. Those meetings provided an initial overview of the ecosystem
and its historical evolution.

• A workshop was organized in July 2011 for the announcement of the release
of MDD-tools as open source software, the researchers participated in this
workshop where accounts of experience with MDD tools by third party devel-
opers were presented. The feedback from external subcontractors allowed us
to confirm the information collected from within CSI.

• Two meetings were organized to focus on the historic-technical perspective of
the ecosystem, the meeting were conducted by the researchers in the form of
unstructured interviews where the industrial participants were asked in gen-
eral about the ecosystem evolution and specifically about the socio-technical
aspects that characterized it.

• Eventually a working document was produced to summarize what emerged
during the focused meetings and served as the reference for discussion and
clarification, which took place mainly via email and telephone.

• After the first version of the work was available, the researchers conducted two
semi-structured interviews with developers who actually used the MDD tools
in order to confirm or refute the interpretation.

The goal of our investigation is to describe a complex and large local ecosystem
and document the main patterns that emerge during its historical evolution. Though
our approach is similar to a case study [Runeson and Höst, 2009], the breadth,
temporal duration, geographical extension, and moreover the interpretive nature
make it depart from the usual understanding of that kind of study.

The type of data collected in the previous events range from informal notes taken
on paper, to detailed notes taken e.g. with text editors, to structured notes taken
e.g. with mind-mapping tools, to interview transcripts. Due to the heterogeneity
of the materials and the mainly interpretive nature of our work we decided not
to use common qualitative methods (e.g. coding techniques)[Seaman, 1999], which
are more suitable for hypothesis confirmation – i.e. a positivist approach – and
homogeneous materials.

We summarize the main features of our work with reference to the basic principles
of interpretive field research proposed by Klein and Myers [Klein and Myers, 1999]:

Fundamental Principle of the Hermeneutic Circle: it is assumed that
“movement of understanding is constantly from the whole to the part and
back to the whole” [Gadamer, 1976]. Our understanding started with
specific technological aspects concerning model lifecycle and extended to the

94

4.2 – Method

whole ecosystem, the several iterations allowed us to achieve a satisfying
comprehension.

Principle of Contextualization: in reporting the evolution of the ecosystem we
strive to provide as much contextual information as possible to show how the
observed phenomena emerged.

Principle of Interaction Between the Researchers and the Subjects:
several concepts presented in the chapter emerged through the interaction
among the researchers and the industrial authors. The very idea of considering
the MDD tools, its support team, the development teams using it as an
ecosystem emerged during the meetings and was not originally present in the
data.

Principle of Abstraction and Generalization: the first part of this chapter
(see section 4.3) reports and idiographic interpretation of the CSI ecosystem
evolution, while the following part (see section 4.4) attempts to abstract a
few general patterns that may attain a wider, nomothetic validity. We do not
claim any statistical representativeness of our generalization, its validity relies
“on the plausibility and cogency of the logical reasoning used in describing
the results from the cases” [Walsham, 1993] and in the substantial agreement
with findings from other works available in the literature.

Principle of Dialogical Reasoning: given our role of authors, we may declare
the näıve expectation of the adoption of MDD tools to spread though the
ecosystem solely due to its pure technical excellence. We actually confronted
such preconception in two ways: when data actually supported it we looked for
some additional objective measure, on the contrary we reported other factor
affecting the diffusion of MDD as they emerged from the analysis of data.

Principle of Multiple Interpretations: the main source of information for this
investigation relies on the two industrial coauthors who both belong to the
MDD support group. Additional viewpoints come from the third party devel-
opers presentations during the workshop and from two interviews with indi-
vidual developers belonging to the group of MDD tools users.

Principle of Suspicion: the researchers’ group often discussed about the infor-
mation provided by the industrial side and always concluded that the trust
relationship was well deserved.

The assessment of the validity of the results is an important methodological
part in any experimental and more in general positivist research. We intend to
stress that our effort is essentially of interpretive nature, therefore the generalization

95

4 – Modeling adoption in large company: the CSI case-study

1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12

Era

Co
m
m
un

ity

In
ve
st
m
en

t

M
at
ur
ity

Q4 Q1 Q2 Q3 Q4

Pr
e<
M
DD

In
fo
rm

al

As
se
ss
m
en

t
Q2 Q3 Q4 Q1 Q2 Q3

2013
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1

2008 2009 2010 2011 2012
Q2 Q3 Q4 Q1

Figure 4.1. Overall timeline

effort cannot be evaluate in terms of external validity. The motifs reported in section
represent an attempt to abstract the key features of the ecosystem evolution, though
it is not possible to claim their general applicability to other contexts. They can be
compared to existing results in the literature and to the authors’ experience, and
it is possible to argument – though not prove – their potential validity in similar
settings.

4.3 History

The software ecosystem revolving around CSI started its evolution, due to the in-
troduction of the MDD approach, back in 2008; we document its evolution over a
five years period until 2013, time of this writing. We start by presenting the envi-
ronment before the introduction of MDD and then document the evolution through
five main eras. Figure 4.1 shows the overall chronological layout of the eras:

• Informal: initial MDD tools are developed and used in an ad-hoc manner;

• Assessment: commitment to evaluate a possible platform for enterprise-wide
adoption;

• Investment: development of MDD-Tools platform and diffusion within en-
terprise boundaries;

• Maturity: involvement of contractors and enhanced support;

• Community: the community take responsibility for the MDD-Tools.

In order to represent the ecosystem throughout its evolution we use a set of
diagrams – one per era – that represent the members of the ecosystem as ovals. The
artifacts and services exchanged by the members are reported as arrows from the
producer to the consumer. We depict sub-systems – i.e. groups of members that
play a specific role – using dashed ovals. Sub-systems can be constituted by single
working groups (e.g., the software engineering group), by categories of personnel
(e.g., business analysts) or categories of organizations (e.g., sub-contractors). For

96

4.3 – History

PAs

(100+)
Citizens

(4.5 M)

SEG

Business

analysts

Web

farm

Services

The internal factory

The external factory

RequirementsServices provisioning

Sub-contractors

(Tens)

Constraints

Devs
Technical

analysts

Figure 4.2. Ecosystem before MDD

every era we highlight with thick (red) lines the changed or new elements with
respect to the previous era.

During the different eras it is possible to observe how the new paradigm starts as
an autonomous initiative of a small group of developers (Informal), then it gains the
attention of the CSI management (Assessment), it is adopted within the boundaries
of the CSI organization (Investment). Later the change affects the whole ecosystem
(Maturity) and finally the responsibility for the solution is moved away from the
central organization to be distributed across the ecosystem (Community).

4.3.1 Before MDD Era

Period: until March 2008

The initial configuration of the ecosystem can be observed in Figure 4.2.
In CSI different kinds of applications are developed. Among them a large number

are web applications to be plugged into web portals for several different public
administrations. These web applications often need to comply with rigid internal
rules, which include coding standards, building standards, graphical standards, and
rules for other technical aspects such as the mechanisms for authentication. The
standards are in place to make the development process more robust and reliable,
obtaining predictable costs, and ensuring the products meet given quality standards.

97

4 – Modeling adoption in large company: the CSI case-study

Development rules are mainly defined by the Software Engineering Group (SEG).
The presence of rules and conventions is also motivated by the fact that CSI does

not offers software development services only, but provides hosting to some of its
larger institutional customers too. Thus the company aims to produce applications
based on small number of technological infrastructures, with the goal of reducing
the effort for deployment and maintenance of the web farm. The web farm is an
infrastructure managed by CSI and used to host a large number of customers’ web
applications.

The organization strives to have a software factory where the kind of applications
typically developed (web applications) can be produced according to a precise and
repeatable process. The software factory is partially internal (consisting of technical
analysts and developers employed directly by CSI) and partially external (i.e. sub-
contractors).

Customers describe requirements to business analysts from CSI; who produce
an analysis document that is delivered to the software factory. The factory builds
the application, according to the analysis and adhering to the development rules.
Once produced, the application is typically passed to the system admins who are
responsible for the deployment in the internal web farm.

The reported baseline productivity – at this stage of the ecosystem evolution –
was 15 function points per person-month, considering the overall project. While, fo-
cusing on the bare development activities (within the software factory), the produc-
tivity was 30 function points per person-month. For the computation of functional
size CSI uses IFPUG function points [Ifpug, 2012].

4.3.2 Informal Era

Period: between April 2008 and June 2008.

The SEG developed a tool to generate the skeleton of services. The ultimate
goal was to simplify the startup process of projects developing new services and to
reduce both the effort and the errors – frequently due to a copy & paste approach.

The tool was named csiskelgen and it was initially intended to be a simple
template-based generator. During the development the SEG realized that they
could produce a more general and therefore useful tool with a small additional
effort. For this reason they decided to make it more flexible adopting a Domain
Specific Language (DSL)1 for the description of the services to be generated.

1A Domain Specific Language is a language with a limited expressiveness designed to express
concisively a certain aspect. Famous DSLs include HTML, CSS and Latex. Recent tools highly
reduced the cost of developing this languages, augmenting significantly the number of practicioners
realizing them. For more details see [Fowler and Parsons, 2011]

98

4.3 – History

PAs

(100+)
Citizens

(4.5 M)

SEG

Business

analysts

Web

farm

Services

The internal factory

The external factory

RequirementsServices provisioning

Sub-contractors

(Tens)

Constraints

Devs
Technical

analysts

csiskelgen

Figure 4.3. Ecosystem during the Informal era

The following two usage modalities were supported:

basic modality generate the skeleton of the service and from there develop the
application without further using the tool,

advanced modality define through a model the interface of the service and some
aspects like security and transactionality. From this model code could be ob-
tained and application-specific logic could be written within protected regions.
Then the model could be later modified and the code re-generated with the
protected regions preserved. So the tool could be used along all the duration
of the project. Users do not just generate an initial skeleton but they build a
model of the service then they progressively refine it during the whole life of
the project.

At this stage the company management was largely unaware of the sperimenta-
tion with MDD techniques: this was regarded as a technical implementation detail,
known only to developers using it. This was possible because project management
let the developers pick their own tools and this stage those tools were not regarded
as an important asset or a mean to execute a organizational transition. So the de-
velopers working in the company could freely decide whether to use the tools. A
large portion of them decide to adopt the ”advanced modality”.

99

4 – Modeling adoption in large company: the CSI case-study

PAs

(100+)
Citizens

(4.5 M)

SEG

Business

analysts

Web

farm

Services

The internal factory

The external factory

RequirementsServices provisioning

Sub-contractors

(Tens)

Constraints

Devs
Technical

analysts

servicegen

Figure 4.4. Ecosystem during the Assessment era

This first era of the ecosystem is described in figure 4.3. The main novelty is
represented by the csiskelgen that is provided by the SEG to the developers in the
software factory. An important motif in this era is represented by the adoption of
the MDD approach, conducted on a voluntary base (see Sect. 4.4.1).

No precise data is available about productivity but the developers reported the
impression of benefiting from adopting MDD. Actually the diffusion at this stage
was primarily driven by an immediate productivity gain perception.

Still some developers did not like to give up the full control on the code but they
felt the trade-off was worth while because in return they were shielded from some
technical details about more difficult and less creative aspects, e.g. securitization.

4.3.3 Assessment Era

Period: between July 2008 and October 2008.

In the previous era a basic MDD solution was started autonomously by develop-
ers and began to spread exclusively because of word-of-mouth. At this point the CSI
management become aware of this solution and decide to conduct an evaluation of
MDD technologies. The goal of the evaluation is to drive possible new investments
on a more complete toolset.

In this timeframe the SEG evaluated different software solutions for the rapid

100

4.3 – History

development of business web applications. They reached the conclusions that bend-
ing those tools to obtain applications as expected by the CSI infrastructure (CSI
does not only develop applications abut also host them in its own web farm) would
have been very difficult. The company realized the only feasible solution was to
craft its own tools. It was clear upfront that the investment to be done would have
been relevant.

The SEG decided to initially focus on the evolution of csiskelgen tool before
facing the more challenging task of building a full-fledged web application gener-
ation tool chain. The evolution of csiskelgen was named servicegen. The major
enhancements introduced were:

• the model editor was improved: while before the reflection-based editor for
EMF2 models were used a specific one was now developed;

• only the ”advanced mode” – supporting a completed MDD round-trip process3

– was kept while the ”one-shot” approach was discontinued;

• the tool was integrated into Eclipse, thus providing a complete platform and
uniform user experience;

• service orchestration modeling was added, covering an aspect traditionally
considered hard by developers.

Figure 4.4 shows the ecosystem during this era. At this level the only noticeable
difference is the shift from csiskelgen to servicegen but another crucial aspect is that
the support for the initiative is growing inside the company boundaries and spread
from developers to the management. Moreover something important happened un-
der the hood: enough confidence was gained about the maturity of the enabling
technologies, the decision was made in favor of toolsmithing, and the technological
platform – Eclipse EMF – was selected. In particular the decision of developing
their own tools (see Sect. 4.4.2) represented a fundamental decision for the future
evolution of the ecosystem.

2EMF stands for Eclipse Modeling Framework (see http://www.eclipse.org/modeling/emf/.
It includes a complete suite of interoperable components to build personalized MDD solutions

3By the term MDD round-trip process we indicate the typical development process which starts
by defining models, then generate code from them, permit the manual customization of special
region of the generated code and going back to modify again the models, re-generating new code
from them without losing the manual customization of the code. This is a circular, iterative process
which starts from models and permit to later operate again on models. It is the alternative to the
one-shot generation approach in which code is generated from models once and later always edited
directly, without further operating on the models.

101

http://www.eclipse.org/modeling/emf/

4 – Modeling adoption in large company: the CSI case-study

Constraints

PAs

(100+)
Citizens

(4.5 M)

SEG

Business

analysts

Web

farm

Services

The internal factory

The external factory

RequirementsServices provisioning

Sub-contractors

(Tens)

Constraints

Devs
Technical

analysts

Support

Dev.

Figure 4.5. Ecosystem during the Investment era

The solution emerging was based on the definitions of a set of meta-models using
the Ecore metamodel. Ecore is the solution typically used to describe meta-models
when using the EMF platform. It is also the reference implementation of the OMG’s
EMOF (Essential Meta-Object Facility). The EMF models describing the single
applications (and adhering to the designed meta-models) where developed through
specific editors created in these phase. From models source code was generated using
Xpand4, a templating system interoperable with EMF models.

In terms of adoption of the MDD approach became more popular, but still limited
to services and in particular to orchestrated services.

4.3.4 Investment Era

Period: between October 2008 and December 2009.

Given the technical viability of the MDD approach has been verified in the previ-
ous era, the company management launched an internal project for the development
of a suite of model-driven tools (named MDD-Tools). The goal of this project was
both to improve and consolidate servicegen but also to build the tools required to

4http://www.eclipse.org/modeling/m2t/?project=xpand

102

http://www.eclipse.org/modeling/m2t/?project=xpand

4.3 – History

develop web applications presentation layer (guigen) and data access layer (data-
gen).

A significant investment in the MDD-Tools project was contributed as part of a
project (α). After project α a set of pilot projects were conducted supporting with
concrete evidence further decisions; the essential productivity features are presented
in Table 4.1. The company measures regularly the number of function points of each
process using an approach based on IFPUG.

All these projects were completed in time and reached their goals. The projects
had good productivity (compared to the usual productivity measured at the same
company), even better than the expectations; this is was particularly welcome be-
cause many of the developers involved had not prior experience with MDD. Circa
20 developers learnt how to use the MDD tools, and at the end of 2009 some teams
were able to utilize MDD Tools without the direct involvement of the authors of the
tools.

A development group (within the SEG) was created and put in charge of devel-
oping the MDD-Tools project. As a consequence, a rigorous development process for
the tools was put in place with formalized mechanisms for versioning, deployment,
and issue tracking.

From pilot projects two problems arose: first, the need for documentation be-
came more and more evident, then the initial reception from technical analysts was
not positive. Technical analysts did not have prior experience with the tools and the
solutions they proposed were sometimes not implementable with tools as described
by them. Through discussions with developers it was possible to find ways to imple-
ment variants of these functionalities in a satisfactory way. However analysts were
somehow reluctant to embrace the change, probably because they initially perceived
the tools as limiting.

Figure 4.5 shows the ecosystem during this era. The MDD-tools were provided
to the software factory, together with basic face-to-face support. Only a few pilot
projects were developed using the MDD-tools, they coexisted with projects devel-
oped using the traditional (non model-driven) approach. A fundamental change in
the ecosystem is that a new type of artifact started to be exchanged: models. In-
stead of providing the final code, the model was provided with application-specific
logic – in protected regions – enabling the generation and re-generation of the final
application.

In general the results were considered positive and the organization gain the con-
fidence for a larger adoption of the MDD Tools: during this era the MDD approach
grew into a strategic asset for the company.

4.3.5 Maturity Era

Period: between January 2010 and December 2012.

103

4 – Modeling adoption in large company: the CSI case-study

Duration Productivity
Project Size From To All Devel.

Baseline 15 30

β 1091 Oct. 2009 Feb. 2010 32 80

γ 345 Aug. 2009 Dec. 2009 - 48

δ 307 Sep. 2009 Oct. 2009 39 89

Table 4.1. Productivity of pilot projects vs. baseline (function points)

SEG

Business

analysts

Web

farm

The internal factory

The external factory

Sub-contractors

(Tens)

Devs
Technical

analysts Dev.

PAs

(100+)

Services

RequirementsServices provisioning

Figure 4.6. Ecosystem during the Maturity era

In this era the MDD approach reaches maturity. Its usage was institutionalized
and so it impacted more deeply the organization and started to spread to subcon-
tractors, hence to personnel not directly employed at the company or consulting at
the company offices.

Support was offered in a more structured way (see Sect. 4.4.4 for details). In
addition, more and more developers, who already gained experience with the MDD-
tools, were able to coach novice adopters.

Both guigen and servicegen were evolved as follows:

• guigen: the code generated was checked to be XHTML compliant and stan-
dardized. The support for skins was implemented: the mechanism permitted
to customize the appearance of generated applications, making easier to adapt

104

4.3 – History

to different PA web portals and to other kinds of customers. A specific group
for the development of skins was created at CSI. The tool was evolved to sup-
port rich user interfaces, e.g. including GIS maps. A considerable effort was
put to guarantee that MDD-Tools generated code compliant with the Italian
regulation for accessibility which is particularly stringent for portals for the
PA5.

• servicegen: a new generator was added to target the web services frame-
work named Apache CXF6. Servicegen permits to define web services and
their orchestration. It let the developers model the interface, user groups,
authentication rules and so on.

The quality of the generated code was assessed by means of static analysis tech-
niques. In particular the SONAR7 tools was used and the generator were modified
to match internally defined quality thresholds (see Sect. 4.4.6).

The project was released under an open-source license, the EUPL8. Opening the
project required first the legal team of CSI to review the different candidate licenses
and pick up the most suitable one. On the technical side the tools needed to be
reviewed to remove elements which were too much ”CSI-specific”. For example
particular services were adopted to implement authentication and authorization of
web portals developed by CSI, this aspect and others were modified to be more
customizable.

The first efforts to make subcontracting companies to adopt the tool had a limited
success: companies were reluctant to invest in a tool which was still considered too
much CSI-specific. In particular those companies felt that the investment in training
the people for the MDD-tools platform was not enough rewarding.

Anyway, during this era, the internal usage of the tool use grew. At the end
of year 2011 more than 200 services were developed using MDD-Tools and more
than 70 developers were able to use them autonomously. The growth in the number
of users brought upfront the necessity for training, documentation and technical
support (see Sect. 4.4.4).

Training was provided by the team who developed the MDD tools through both
scheduled internal courses and coaching during the kickstart era of the projects.
Finally the documentation was completed and enriched with tutorials, screencasts,
and thematic guides.

5See Italian law nr. 4 of the 9th of January 2004, and successive modifications
6http://cxf.apache.org/
7http://www.sonarsource.org
8http://en.wikipedia.org/wiki/European Union Public Licence

105

4 – Modeling adoption in large company: the CSI case-study

A communication problem between analysts and developers already emerged
during pilot projects; analysts did not understand the nature of the MDD-tools.
This brought two types of problem: not only the requirements did not leverage the
capabilities of MDD-tools, but also sometimes the requirements turned out to be
not practically implementable using the MDD-tools. To solve this issue a showcase
project showing the nature of single components was developed. Using it analysts
could learn the aspect and the utility of each one of them and started to design
solutions referring to these building blocks.

The configuration of the ecosystem at this stage is presented in figure 4.6.
MDD-tools are not provided only to the internal factory but also to external sub-
contractors, which become part of the new MDD-centered community. The sub-
contractors were convinced about the cost-effectiveness of investing in MDD-tools
skill acquisition with the promise of a sustained flow of jobs (see motif RoI for
adopters in Sect. 4.4.7). At this stage the development rules previously described
through documentation are mostly encoded in the MDD-Tools (see automatic en-
forcement motif in Sect. 4.4.5).

The development is performed using MDD-tools in the whole ecosystem, so the
deployment to the web farm is performed by providing the models and the addition
logic (in the form of code within protected regions).

Near the end of the community approach a questionnaire was distributed to
some of the sub-contractors of the company to evaluate the knowledge of the tool
and plan the transition to the community era. Considering that the sample was not
built according to designed schema we can not assume absolute representatitivity,
however 25 companies were involved. Most of the participants declared interest in
learning more about the solutions as users, and a relevant part showed interested
also in learning about the internals of the MDD-Tools.

4.3.6 Community era

Period: since January 2013.

In this era the economic conjuncture forced CSI to reduce the investments on
further development of the MDD-Tools. Nevertheless the company was aware of
the necessity of guaranteeing support for existing and new users. At this stage the
approach was already largely adopted by CSI and several ongoing projects were
using the MDD-Tools. The company decided to focus long term efforts in fostering
a stronger involvement of the community in the development of the tools.

In particular the development is not anymore performed by one single central
unit; a reorganization deployed a new structure where a single person (the product
leader) is responsible for managing MDD-tools evolution by receiving contributions
from several different business units and teams. While previously some users started

106

4.3 – History

Business

analysts

Web

farm

The internal factory

The external factory

Sub-contractors

(Tens)

Devs
Technical

analysts

PAs

(100+)

Services

RequirementsServices provisioning

Figure 4.7. Ecosystem during the Community era

naturally to coach and evangelize about MDD-tools this role is now officialized by the
company. Moreover those active users are asked to contribute to the development
of the tools itself. This change should lead to a tailorization to the needs of the
different business units, which will have more control on the evolution of the suite.

Being the tool open-source and given that many subcontractors gained experi-
ence using it, it started to be used for projects not involving CSI. Unfortunately
precise data on the number of these projects is not available.

The company invested in a course for twelve developers of the community to
improve the ability to modify the toolset itself and facilitate new contributions.

In this period different business units contribute to the tools according to internal
needs, emerging during the development of specific applications. Contributions are
shared and redistributed to the community. A few contributors are starting to
solve minor bugs or provide small updates even not directly related to their work,
showing ownership of the toolset. For example, a contributor developed a bundle of
the toolchain for Linux, while previously CSI developed bundles for Windows and
Mac OS X.

Until now the community is mostly self-governed. While each user of the tool
is now able to develop functionalities without the burden of synchronization and
amministrative overhead on the other side there is the possibility of effort duplica-
tion or evolving the tools in different directions. The most active members of the

107

4 – Modeling adoption in large company: the CSI case-study

Motif
Effects on

Era
Efficiency Diffusion

Incremental adoption X Informal
Toolsmithing X Assessment
Integration X X Investment
Support X Maturity
Automatic enforcement X Maturity
Generated code quality X Maturity
RoI for adopters X Maturity
Distributed development X Community

Table 4.2. Motifs with main effect and era of appearance

community start to discuss using forums, wikis and a website set-up by CSI; recently
some of them are considering the possibility of producing together a new cartridge
(a plugin of the generator) to support the bootstrap CSS template9. The cartridge
previously developed by CSI were designed for the main portals of the customer PAs
where the main focus was on accessibility. The adoption of the toolset in a differ-
ent context requires some adaptation, mainly concerning the layout that should be
rendered more responsive and “appealing”.

The ecosystem at this stage is depicted in figure 4.7. The MDD-tools open-
source project has now become a new stand-alone entity in the ecosystem. The
developers in the ecosystem now focus on contributing new features of the MDD-
tools, they provide new code to the OSS project. In practice we observe a transition
from a centralized development typical of closed-source environment to a distributed
development typical of an open-source environment (see Sect. 4.4.8).

4.4 Motifs

The way the ecosystem was shaped by the introduction of the MDD-tools and the
way CSI managed to successfully spread over the new paradigm – first internally to
the organization, then to the whole ecosystem – are main features we observed in
our investigation.

Through different forms of interactions that took place in the last two years – in
the context of a collaboration between CSI and Politecnico di Torino – we elicited
several of such practices.

The are first of all an abstraction of our interpretation of the evolution of the

9http://getbootstrap.com/css/

108

http://getbootstrap.com/css/

4.4 – Motifs

Name Incremental adoption

Problem There is resistance to the diffusion of the (development) technology

Context The diffusion is in its initial phase, from the initial proposers’ group to a still small group of
potential new adopters

Forces Tendency to maintain work habits
Skepticism about benefits
Fear of possible difficulties

Solution Conduct the adoption of the technology incrementally and on a voluntary base

Resulting
context

Word of mouth dissipates fears and skepticism, required knowledge is easily available from the
neighbours

Rationale This approach allows for a spontaneous and persuaded adoption and facilitate the natural emer-
gence of champions

Table 4.3. Motif summary: Incremental adoption

ecosystem and secondly they could turn out to be a reservoir of potentially useful
software engineering practices.

We dubbed “motif” the most relevant among the elicited software engineering
practices. We use the term motif because they cannot be considered proper organi-
zation [Coplien, 1998] or design patterns [Gamma et al., 1994], both because they
are not proved10 and they cannot always be formulated as solutions.

The motifs we present here, we believe, are peculiar of the evolution of an ecosys-
tem when a new development tool or technology – produced and used by the different
members of the ecosystem – is introduced. Their applications – in different eras of
the ecosystem history – turned out to be success factors for the favorable evolution
and growth of the ecosystem.

We describe each motif using the so called ”Canonical form”11 for pattern de-
scription, and we report how the motif was applied in the case under study.

Each motif was applied mostly in one specific era as shown in Table 4.2. They af-
fected two main aspects: the efficiency of the software development and the diffusion
of the MDD approach within the ecosystem.

4.4.1 Incremental adoption

Before the initiative started as a formalized task by SEG in 2008, a few tools were
already used to perform code generation. Single developers were using tools like

10We stress here that our approach is mainly interpretive, we cannot claim a positivist nature
for our results, though they could be used as the basis for further a positivist research

11http://c2.com/cgi/wiki?CanonicalForm

109

http://c2.com/cgi/wiki?CanonicalForm

4 – Modeling adoption in large company: the CSI case-study

XDoclet12 or FreeMarker13. The former allows generating code from annotations14

inserted in Java modules, while the latter is a template-based code generator. Be-
cause of this personal experimentation some of the developers where familiar with
code generation and had experienced its benefits on real projects.

When the SEG introduced csiskelgen (i) it was an incremental evolution in re-
spect to previous approaches, and (ii) the adoption was conducted on a voluntary
basis. During initial phases developers were free to adopt it or not for new projects,
without pressure from project managers or executives. Later the adoption of the
tool and its successors spread naturally into different business units thanks to word
of mouth and evangelization spontaneously conducted by satisfied users. When the
management started to encourage a more structured adoption of MDD-Tools many
developers had already either used them personally or heard of success-stories from
colleagues.

According to Rogers [Rogers, 2003] in this case a collective innovation decision
is taken in favor of the adoption of MDD. This situation contrasts with scenarios
where the adoption of MDD is forced by the management and the developers of the
organization have no prior experience with it. In those cases resistances to adoption
are probable [Harrison et al., 1997]. The gradual approach is also suggested in
[Hutchinson, 2011].

4.4.2 Toolsmithing

There are several tools in the marketplace that support the development of business
application using an MDD approach. During the Assessment Era the SEG carried
on an evaluation of the most significant ones.

The result of the evaluation, was that in a large software factory as the one
present in CSI the best solution possible seems the development of custom tool-
chain and structure which could be shaped and adapted to the organization’s need.
Alternatives based on the adoption of packaged solution were evaluated and dis-
carded in the case of CSI.

Toolsmithing, and in particular the definition of specialized editors seems to be
rarely implemented in MDD solutions, with micro companies slightly more inclined
to consider it in respect to large companies [Tomassetti et al., 2012]. This is probably
due to the fact that more complex processes are typically adopted in the latter,
which could be more reluctant to develop their own tools and perform the necessary

12http://xdoclet.codehaus.org/

13http://freemarker.sourceforge.net/

14http://en.wikipedia.org/wiki/Java_annotation

110

http://xdoclet.codehaus.org/
http://freemarker.sourceforge.net/
http://en.wikipedia.org/wiki/Java_annotation

4.4 – Motifs

Name Toolsmithing

Problem The needs of the company are not met by existing commercial tools

Context The technological evolution compels a company to adopt new tools

Forces Existing tools impose their approach
The company has a set of constraints that contrast with the tool’s approach

Solution Develop the tool in house

Resulting
context

The constraints are satisfied by the new tool

Rationale Building the tool allows for a perfect customization to the technical and process needs of the company

Table 4.4. Motif summary: Toolsmithing

complimentary steps for a successful deployment (e.g. revise the processes, train the
developers).

It is true that a significant effort is required for the development of appropriate
technological knowledge to enable such an approach, though this study suggest that
practitioners working in software-intensive companies can consider this possibility as
a viable option. An industrial survey confirms the role of toolsmithing in improving
the chance to achieve improved flexibility, productivity, reactivity to changes and
platform independence [Torchiano et al., 2013]. To partially reduce the development
cost we also suggest to base custom MDD solutions on enabling platforms like EMF
or commercial alternatives (e.g., MetaEdit+).

4.4.3 Integration

The initial tool (csiskelgen) was not integrated with the IDE and it was quite un-
polished, still it was perceived as valuable from developers.

IDE integration turned out not being critical to promote the first adoption of
the tool but it had to be addressed to permit to a larger portion of the users to
adopt it.

This turned out to be a successful action in the Investment Era (see section 4.3.4.

The selected technological platform (Eclipse EMF) is well suited to build plug-
ins for the Eclipse IDE that is typically used by the developers in the ecosystem.
The integration with the platform permits to benefit of accessory facilities (like
plugins for supporting version-control systems) with which the user-base is already
familiar. Integration can be seen as a way of mitigate risks and to leverage existing
investments [Selic, 2003] both on tools development or acquisition and effort spent
on skill development.

Balasubramanian et al. reported missing integration as a problem making diffi-
cult to obtain a complexive view of the system [Balasubramanian et al., 2006]. We
agree with this finding and we suggest to practitioners to consider tools integration

111

4 – Modeling adoption in large company: the CSI case-study

Name Integration

Problem New adopters have problems in using the technology that doesn’t fit their usual workflow

Context The technology starts to be adopted by a larger group not including only enthusiasts

Forces Developers tend to stick to their workflow
Tools implicitly assume a given organization of work

Solution Integrate the tools into the commonly used development environment (e.g. as plug-ins)

Resulting
context

No significant change to the workflow is required to use the tools

Rationale A least effort solution that allows using the usual IDE without heavily affecting the workflow can
potentially overcome the resistance from developers

Table 4.5. Motif summary: Integration

Name Support

Problem New adopters have problems in using the technology: they need to train, learn and acquire the
specific skills

Context Scaling up from a small (voluntary) group, through management commitment

Forces Need for documentation and support
Community used direct personal contacts

Solution Plan of an heavy effort investment in documentation, building a support group

Resulting
context

Information is available through the official documentation or resorting to support group

Rationale When a certain size threshold for the adopted group is reached, nearby colleagues are not anymore
available or sufficient for training and problem solving therefore an institutionalized approach to
knowledge sharing must be implemented

Table 4.6. Motif summary: Support

when planning the diffusion of technological changes to a large number of different
actors.

4.4.4 Support

While for popular and widespread development technologies the knowledge is nor-
mally freely available in the web, for tools used only within a certain ecosystem (like
MDD-Tools) specific support have to be provided from within the ecosystem itself.

In this case support is needed both during development and maintenance. Dur-
ing development programmers need clarifications about the modeling language and
advices on the best practices, during maintenance help is needed for tuning the
application and to conduct bug fixing.

Initially the documentation was very limited and there was not a group in charge
of offering support, this was due to the nature of the initial incremental and voluntary
adoption process (see Sect. 4.4.1 above). At that time users just turned their
question to the initial contributors or other developers in the same team.

112

4.4 – Motifs

The transition from in-house usage of the MDD solution to the ecosystem config-
uration required an adequate management of knowledge. In this respect the situa-
tion is similar to what happens with off-shoring: knowledge which existed internally
within an organization’s boundaries is moved to and exchanged with external or-
ganizations [Bahli and Rivard, 2005]. In the CSI case the knowledge considered
includes both technical expertise and know-how about processes.

The importance of knowledge transfer is fundamental to properly perform this
step and both explicit and tacit knowledge should be considered [Swartbooi, 2010].
In our case-study the explicit knowledge was transmitted through documentation
while the tacit knowledge was accessible through the support team and with dedi-
cated training-on-the-job activities.

When the ecosystem grew at a fast pace during the Maturity Era (see section
4.3.6), such approach became infeasible, thus leading to different strategies to guar-
anteeing support. First the SEG offered both the first and second level support, as
the workload kept growing the first level support had to sub-contracted to an ex-
ternal company. A Q&A system (similar to Stackoverflow15) was also implemented
when the same questions started to appear over and over. The system was made
available to all the developers working in the ecosystem.

It is important to emphasize how value can be provided to a small initial circle
of users with a limited investment while the leap out of the circle – i.e. delivering
value to a wider population of developer – require a much larger investment.

Though, at a later stage, as the tools are more and more adopted the number of
advanced users able to offer some support to colleagues grows.

It is important for practitioners to consider both explicit and tacit knowledge
and be ready to perform the necessary investments, if they want to fully exploit the
benefits of a technological transition.

4.4.5 Automatic enforcement

The control of several different aspects of the applications is fundamental. For
instance from a functional perspective the applications must be hosted by the CSI
web farm and be integrated with common platform modules, e.g. authentication.
From a non-functional point of view, web portals developed for the PA must conform
to a set of accessibility standards.

MDD-tools make possible the governance of every aspect of the applications life
cycle. Sub-contractors could in principle provide just the models – accompanied
by application-specific logic that need to be written manually within the protected
regions – to CSI, which then autonomously generates and deploys the application.

15http://stackoverflow.com/

113

4 – Modeling adoption in large company: the CSI case-study

Name Automatic enforcement

Problem It is difficult to make several different providers (sub-contractors) to comply with a given set of
standards

Context The developed software must comply to legal constraints (e.g., on usability) and technical constraints
deriving from the web farm platform

Forces Conformance to (usability/integrability/standards) rules is required
Target platform may vary
Developers and sub-contractors tend to adopt most familiar/cheap technologies

Solution Encode the rules in the code generator

Resulting
context

Conformance is guaranteed by the tool

Rationale Instead of imposing directly the constraints, e.g. through heavy rules and standards books, the
constraints are encoded in the tool and the conformance is automatically – and mostly transparently
– ensured by the everyday working tools, e.g. by generating conforming code

Table 4.7. Motif summary: Automatic enforcement

This approach permits the enforcement of standards and procedures with a limited
effort.

Upon receiving the models, CSI has the option to check them to verify that
quality requirements are met, for instance the rules for usability could be mostly
automatically verified. This is made possible because an high level of abstractions
is adopted (models instead of code). In addition it is possible to use a standardized
building process to generate the code and produce the final application. Finally, the
deployment also can be performed in a standardized way.

The transition to the MDD-based ecosystem with automatic enforcement during
the Maturity Era (see section 4.3.6), brought significant benefits. This approach
contrasts with the reality in other contexts – e.g. PAs in close regions – which
experience strong difficulties in managing, installing and maintaining a plethora
of interdependent applications developed with different technologies, on different
platforms and with different requirements.

The idea of enforcing architectural rules was envisioned before [Mattsson, 2008].
Normally it is executed as a supplementary step in which architectural rules are
automatically or manually verified [Mattsson, 2010]. In this case rules were not
anymore formalized explicitly, but they were embedded in the generators and the
solution itself.

We suggest practitioners to consider the benefits of automatic-enforcement in
managing relations across an ecosystems. By reducing the cost of evaluation and
making more objective the process, the level of confidence in the relation can grow.

114

4.4 – Motifs

Name Generated code quality

Problem The poor quality of generated code affects the overall quality of the product

Context The development tool produces code, that will be shipped as part of the final product, e.g. using an
MDD approach

Forces Quality of generated code is rarely put into question
Generated code has the potential to cripple the whole application
Generated code could need to be understood, e.g. to integrate, debug, troubleshoot
Generated code is not intended for developers to read

Solution Assess the quality of generated code and improve the generator

Resulting
context

The final quality of the generated code is improved, which is reflected in improved overall quality of
the product. In addition the understandability of the code is improved

Rationale Several quality issues may indicate bugs that otherwise would be difficult to understand, and the
resulting improved quality often implies better understandability

Table 4.8. Motif summary: Generated code quality

4.4.6 Quality of the generated code

During the Maturity Era (see section 4.3.6), the SEG performed an investigation
for quality issues on the generated code and individuated a few actual bugs. It is
important to notice how an investment on the quality of the generated code could be
immediately retrofitted to affect all the projects developed using the code-generation
feature of the platform.

Normally the quality of generated code is not monitored; this case suggest it
could make sense to do that because:

• the generated code could need to be integrated with custom code written by
developers and not generated,

• also if manually written code is not inserted the generated code could still
need to be read and understood for debugging and troubleshooting,

• quality problems in the generated code could lead to errors or performance
issues.

Investigation on the quality of the generated code is often neglected. We sug-
gest it useful to improve two factors: performances and code readability. For most
applications the performances are simply not an issue, while for applications where
performances are critical MDD tend to be rejected to retain full control of the exe-
cuted code [Selic, 2003]. Code readability of generated code is normally not much
considered: the best-practices suggest that all code should be generated [Kelly and
Tolvanen, 2008] and considered as a semi-artifact necessary just to obtain the com-
piled applications. We argue it is not frequently the case: in many MDD solutions

115

4 – Modeling adoption in large company: the CSI case-study

Name RoI for new adopters

Problem New adopters are reluctant to invest in training on new technology

Context The development tools requires a non-negligible effort in training and learning, while the technology
is mainly used within the ecosystem

Forces Large upfront training investment
Limited reusability of the new skills

Solution Provide a medium-/long-term commitment in providing jobs

Resulting
context

Upfront investment is repaid by long-term job series Acceptance at company level may trigger a
similar problem at individual level

Rationale The new adopters (sub-contractors) must have some form of guarantee that the investment yields a
return through a long-term job agreement

Table 4.9. Motif summary: RoI for adopters

a large fraction of code is generated but corner-cases are managed through hand-
written code [Torchiano et al., 2013] which need to be integrated with generated
code. In this scenario the readability of generated code becomes important.

Investments in the quality of the generated code can be incremental and benefit
not only applications currently being developed but also past ones – by means of
a regeneration of the code – and future ones. On the contrary investments on the
manually written code of one applications can benefit only the individual application
being targeted.

Working on improving the quality of code, previous findings should be considered:
previous research [Vetro’ et al., 2011, Vetro’ et al., 2013, Vetro’ et al., 2010] indicates
that while a portion of warnings issued by static analysis tools are highly correlated
to potential errors, most of them are not. The latter type of indicators cause an
high workload corresponding to a small or null contribution to the improvement of
quality. Therefore when evaluating the quality of the generated code the relevant
indicators need to be identified using techniques which require competencies on the
technologies involved and on statistics.

4.4.7 RoI for external adopters

The adoption of the MDD-tools by sub-contractors required, on their side, a sig-
nificant investment in acquiring the specific skills for using that platform. Such
knowledge, though, could only be profitable when developing for CSI. During the
Maturity Era (see section 4.3.6), the decision of a sub-contractor to adopt the MDD-
tools therefore consists in evaluating the return yielded by such an investment.

An affordable return on investment is possible if CSI is able to guarantee a given
amount of work to be sub-contracted. Once sub-contractors felt that there was
a sufficient yield they were willing to invest in training for MDD-tools, with the
possibility of using it also for other customers.

116

4.4 – Motifs

Name Distributed development

Problem Centralized development team can hardly identify direction for enhancing the tools

Context A centralized team manages the development a fairly mature technology

Forces Difficult to identify directions for evolution
Lack of knowledge about the specific
Need to evolve the technology

Solution Distribute the development to the individual business units that use the technology

Resulting
context

The needs are address by evolution within the same context where they arise

Rationale The evolution is pushed and driven by specific needs, plugged into a stable and mature core

Table 4.10. Motif summary: Distributed development

While this strategy eventually led most sub-contracting companies to decide for
the adoption of MDD-tools, individual developers in such companies were sometimes
still reluctant in investing too much in learning the MDD-Tools. Their fear was to
reduce their ability to find a different job, because the skills acquired with MDD-
Tools are relevant only inside the ecosystem of companies using them. Developers
would prefer to invest in skills which provide access to a larger job-market (e.g.,
java programming). In this case the advantage of the business unit or the benefit of
the supplier need to be put in front of the prospective of the single developer. On
the other end developers using MDD-Tools slightly change their role and develop a
different skill-set which could be useful to work with other higher-level DSLs. To
individuals to benefit of this acquired skills the industry need to adopt them more
largely.

4.4.8 Distributed platform development

Since the MDD-tools platform reached its maturity, further evolution mainly address
new needs that emerge in different domains during the development. The central
team – the SEG at CSI – in charge of the tools’ evolution encountered several
difficulties in collecting, understanding and implementing the requirements coming
from the development teams.

Within a large ecosystem, not only the evolution becomes critical, offering a
centralized tool support shows some drawbacks: the person offering support typically
does not know the project and she is not aware of its peculiarities and does not feel
involved in the project. In addition, this division introduces an attribution problem
[Jaspars et al., 1983]: the people in central support unit tend to be considered
responsible for most problems even loosely linked to the MDD-tools and they feel
they are blamed too often, while developers working in the other business units
tend not to considered themselves fully responsible for the correct implementation
of their projects.

117

4 – Modeling adoption in large company: the CSI case-study

In an attempt to solve the above problems the tools’ evolution was later moved
to a distributed schema: individual business units are in charge of developing the
extensions they need. External partners are welcome as well to provide contribu-
tions. Most of the people originally working in the support unit have been relocated
in the business units, while at the central level is maintained only the role of coor-
dinating the development of the tools, to maintain a cohesive strategy and to avoid
duplication.

4.5 Discussion

The whole history of the ecosystem evolution represents a continuous improvement
both for the collective and the individuals from several perspectives. The final
configuration of the ecosystem is an improvement in respect to the initial situation
for a variety of reasons. Here we summarize the changes occurred in the ecosystem
and its evolution along a few relevant dimensions.

Productivity: the development process is based on more productive tools, which
permit to consistently reduce the development cost and provide more pre-
dictable development time. The productivity measured in the Investment era
(see Table 4.1) indicates an improvement factor ranging from 1.5 to 3, w.r.t.
the baseline. This result is consistent with a previous survey of modeling and
MDD in the Italian industry [Torchiano et al., 2013].

Skills: the ecosystem allowed many companies of the regional IT district to acquire
competencies on MDD which were scarce before. As MDD-Tools are adopted
by sub-contractors not for new customers, different from CSI, the competencies
developed on MDD-Tools become more useful and led more practitioners to
learn about MDD. Actually the lack of competencies has been reported among
the top three reasons why MDD techniques are not adopted in the Italian
industry [Torchiano et al., 2013]; we expect the new skill will trigger a virtuous
circle that will lead to a wider adoption of such techniques in the area.

Control: before the adoption of MDD-Tools, manual code inspections were nec-
essary to verify the adherence of applications to the company development
standards. After the adoption of MDD-Tools a large portion of code is auto-
matically generated from models and therefore the generation process auto-
matically ensure the strict adherence to those standards. In summary MDD-
Tools significantly simplified the governance of the applications. Transitions to
new platforms are now possible and cheaper, because the technological aspects
are captured only into the code generators, instead of being spread through
all the codebase. This permits to migrate applications as the implementations

118

4.5 – Discussion

become obsolete, preserving the investment done by customers. For example
a transition from MySQL to PostgreSQL in the CSI web farm was performed
during the period of interest: thanks to the generative approach it required to
adapt only the generators and it was possible to apply it to a large number of
applications with a limited effort.

In the future it could be possible for CSI to acquire directly and exclusively
models which are easier to verify. Some experimentation on metrics for MDD-
Tools models are already started. They could be an important tool for the final
customer to evaluate the quality of the applications received and to permit a
fairer competition between different suppliers.

Flexibility: In a software ecosystem involving tens of companies, as the one cen-
tered on CSI, there are several specific needs and constraints, most of which
percolate from the customers – i.e. several PAs –. During the Assessment era
(see Sect. 4.3.3) a survey and assessment of commercial packaged solutions
was conducted; they were discarded because of lack of flexibility.

The MDD-tools were instead developed as custom tools and structure which
could be personalized using a DSL, building upon the enabling platform of
EMF. Such a solution proved itself flexible enough to accommodate all the
different development needs that emerged in the ecosystem. Toolsmithing
represented a success factor, confirming what emerged from a previous survey
[Torchiano et al., 2013]. The necessity to be able to craft their own tools seem
fundamental for software intensive companies of each size, as emerged also in
a case-study previously conducted by authors of this work [Tomassetti et al.,
2013a].

Roles: Traditionally two figures constitutes the bulk of the employees of the in-
ternal and the external factory: technical analysts and developers. With the
switch to a MDD paradigm of development these factories need to produce
mainly models and the accompanying logic (still written using general pur-
pose languages).

Technical analysts are reluctant to model because it means providing a techni-
cal artifact which is used to directly produce the concrete applications therefore
more responsibilities are involved. While errors in the technical documenta-
tion – e.g. word files – currently do not lead to dire consequences. On the
other end the developers do not want to just model because the related skills
are less useful – in terms of their career – in other contexts than the knowledge
e.g. of some mainstream programming language.

Currently models are written mainly by people trained as software developers.
In the long run the change operated in the ecosystem with the adoption of

119

4 – Modeling adoption in large company: the CSI case-study

MDD call for a redefinition of the figures involved in the software develop-
ment because the skill set required for writing models using MDD-Tools seems
slightly different from the one of developers and technical analysts. The opti-
mal solution seems the definition of a new role for which at the moment there
is an absolute scarcity in the ecosystem. Modellers are a new intermediate fig-
ure. They could be seen as designers who could benefit from some knowledge
about user-experience design principles and usability.

Given the number of personnel employed in the ecosystem it is a need that
could affect the regional market job and should be considered also from the
local universities.

4.6 Related work

The related work is organized in two parts; first we consider the problems and
guidelines in deploying MDD and Software Product Lines (SPLs), then we focus on
software ecosystems.

4.6.1 Deployment of MDD and SPLs

Baker et al. [Baker et al., 2005] describe the effects of the adoption of MDD in a
large company (Motorola) along 15 years. In their experience the major obstacles
in adopting MDE stem to the lack of a well-defined process, lack of necessary skills
and inflexibility in changing the existing culture. In CSI there were already well
established processes and the company was able to form the necessary skills along
the years. Another account from a 5-years project at the same company can be
found in [Foustok, 2007]. The author reports as difficulties the ability to cope
with an increasing rate of change in the technology. In the case of CSI they were
strict about dictating transitions to new technologies and they were not forced by
customers to adopt particular versions or technologies. An important difference in
the two experiences is the usage of UML at Motorola, while at CSI a set of DSLs
was developed.

Fleurey et al. [Fleurey et al., 2007] report about a case-study of MDE adoption.
The case-study considered a time window of 10-years; the focus is on migration
projects, where the benefits w.r.t. conventional techniques can be observed after
an initial period, e.g. the first code could be delivered only after 10 months from
project’s beginning. In addition they present a cost-benefit analysis and suggest
the presence of profitability threshold in terms of project size. The authors suggest
that domain applications last longer than technologies, which change at a faster
pace. Also in the case of CSI MDD, the key features are guaranteeing a longer life

120

4.6 – Related work

to applications and facilitating the unavoidable transitions to new technologies –
which are operated updating the generator and regenerating all the applications –.

While more focused on small companies, authors of this work examined the best
practices for deploying MDD applications [Tomassetti et al., 2013a]. Some lessons
learned for small companies apply also to this case: i) the necessity of flexibility, to
achieve using DSLs and customized solution instead of framework or products off-
the-shelf, ii) the importance of buying the developers committment. The first point
is critical also for CSI, we suggest that software intensive companies need flexibility,
to be able to tailor the development processes considering the competencies and the
specificity of the company. Organizational aspects and the importance of taking in
consideration the reactions of external partners are instead peculiar to large orga-
nizations, given the impossibility for small companies to shape external factors. On
one hand it means small companies have a more rigid environment to adapt to, on
the other hand they have to consider less aspects in designing their MDD solution.
Given that the number of users is not likely to grow up beyond the organization
boundaries the MDD can be deployed with a limited investment (as it was in the
first phases of the CSI case-study).

Hutchinson et al. in [Hutchinson et al., 2011b] report the results of an empirical
study on the assessment of MDE in industry. Their work has two goals: identify the
reasons of success or failure of MDE and understand how MDE is actually applied
in industry. They employed three forms of investigation: questionnaires, interviews,
and on site observations, having as target practitioners, MDE professionals and
companies practising MDE respectively. The questionnaire has received over 250
responses from professionals (the most of them are working in Europe). Some of
the reported findings are: (i) about two-thirds of the respondents believe that using
MDE is advantageous in terms of productivity, maintability and portability (increase
productivty was verified in the case of CSI, as well as portability), (ii) the majority
of respondents use UML as modelling language, and a good number use in-house
developed DSLs (the latter was the choice of CSI), (iii) almost three quarters of
respondents think that an extra training is necessary to use MDE (we have seen
that CSI invested in training), (iv) the majority of respondents agree that code
generation is an important aspect of MDE productivity gain (code generation was
also the choice of CSI), and (v) a little less than half of the respondents think that
MDE tools are too expensive (we can confirm that CSI had to invest consistenly
to create the MDD-Tools). We observed similar perceptions in a survey conducted
by us [Torchiano et al., 2013] except for the issue of extra-training which was not
considered in our survey, however we observed that the lack of competencies is one
of the problems most frequently reported by companies. Differently from the results
of their survey, the cost of supporting tools is seen as a problem only by a small
proportion of respondents in our sample. Probably it depends on the choice to use
existing tools or develop them, and on the size of the user base: we have seen that

121

4 – Modeling adoption in large company: the CSI case-study

in the case of CSI a small user-base was able to use profitably an immature toolset,
while it had to be considerably evolved to be adopted by a large user-base.

Hutchinson et al. [Hutchinson et al., 2011a] report lesson learned from adoption
of MDE in three large multinational companies (a printer company, a vehicle man-
ufacturer and a manufacturer of electronic systems). In particular, the importance
of complex organizational, managerial and social factors in the success or failure
of the MDE deployment. The authors report some organizational factors that can
affect the success or the failure of MDE deployment. The factors that can affect
it positively are: (i) a progressive and iterative approach, (ii) user motivation in
the MDE approach, (iii) an organizational willingness in integrating MDE in the
whole organization, and (iv) having a clear business focus (where MDE is adopted
as a solution for new projects). Instead, factors that can affect it negatively are:
(i) the decision of adopting MDE being taken by IT managers, in top-down fashion
and implemented “all at once” without developing gradually an understanding of
the necessaru process changes, (ii) MDE being imposed on the developers without
providing the right motivations, and (iii) an inflexible organization with a lack of
integration of MDE in previous processes. In the CSI case all the positive factors
were verified and no one of the negative ones, leading to an ideal situation. The
only common aspect with the work proposed in [Hutchinson et al., 2011a] concerns
the motivation of developers.

Mohagheghi et al. [Mohagheghi et al., 2012] interviewed – using convenience
sampling – developers from four companies involved in an initiative called MOD-
ELPLEX. They examined the factors affecting adoption of MDE. Regarding use-
fulness they found uncertain results: most participants recognize the usefulness of
models but they are not sure about the impact on the quality of the final product or
the effects on productivity. MDE is perceived as not simple: its complexity makes
it viable for engineers but not for non technical people. This finding is confirmed by
our results reported in [Torchiano et al., 2011b, Tomassetti et al., 2012]. They show
that only in a few cases business experts are involved during modelling tasks. Also
in our case-study the introduction of MDD led to re-consider the different roles and
their involvement in the development phases (see Sect. 7.6 about Roles).

Regarding compatibility with the existing development process the companies
complained about the lack of standards and the consequent lock-in effect. All inter-
viewed companies reported some problems in integrating their existing approaches
with MDE. Tools could have been part of their problems, them being not considered
satisfying by a part of the sample. In particular, some participants expressed several
concerns about the scalability of the MDE approach to large projects (this could
be related to the motifs Integration and Support). Advantages reported are limited
to the usefulness for documentation and communication purposes. Major reasons
preventing adoption of MDE are the immaturity of tools and processes as well as
the lack of competencies.

122

4.6 – Related work

Catal [Catal, 2009] discusses some of the barriers to the adoption of Software
Product Line Engineering (SPLE). Among the other findindgs, the author suggest
to consider SPLE as mean to obtain resusability at different levels: not only of
implementation artifacts, but also of documentation, tests, practictes and other
complimentary elements. According to Catal some of the problems derive from an
unclear terminilogy (with duplicate terms used in US and Europe) and a lack of
resources to learn how to implement SPLEs. The necessity of deep changes in the
organization’s process make seniors to refrain and resist the migration.

Authors of this work partecipated on an industrial survey about MDD adoption
in Italian companies [Torchiano et al., 2013]. Among other findings, from our survey
emerges that the most common problems in deploying MDD are the size of the effort
required, the necessity to prove the usefulness of the solution designed, the lack of
competencies and proper tools, the missing support from management. In this case
the company solved this issues through a slow evolution which made possible to
limit the initial investment and to progressively buy-in management and developers
support. The size of the company made possible to face the investments necessary
both to design the solution but also to grow the necessary competencies. We think
that this partial transfer of competencies to external companies and the availability
of the toolset to other companies could help other companies part of the district to
adopt MDD, lowering the entry-barriers.

4.6.2 Software ecosystems

In 2009 Jansen et al. [Jansen et al., 2009] proposed a research agenda for software
ecosystems (SECOs). The three prospectives considered are the software ecosystem
level, the software supply network level and the software vendor level. On the soft-
ware ecosystem level strategies are implemented to keep the ecosystem profitable
for all the participating actors; our motif RoI for adopters clearly operates at this
level, also all the motifs related to efficiency could be considered as related to this
level because the efficiency of the tools positevely affect all the participants in the
ecosystem. On the software supply network level relations with suppliers and buyers
are considered: orchestration between partners at different part in the process-chain
is administered at this level; the motif automatic enforcement permits to reduce the
cost of verifying the conformity of the products with the requirements, an important
aspect in managing the relations with suppliers. Finally at the software vendor level
actors considers the effect of the SECO on their own products catalog. For each
prospectives different challenges are reported. Our work addresses a challenge at
the software ecosystem level, in particular Developing policies and strategies within
SECOs for SECO orchestration.

Barbosa and Alves [Barbosa and Alves,] presented a systemic mapping study on
SECOs. Authors included 44 relevant papers. The study, being conducted in 2011,

123

4 – Modeling adoption in large company: the CSI case-study

include papers up to year 2010. The number of papers show an increase of interest
in SECO in the most recent years considered (2010-2011). Of these 44 papers 4 are
focusing on SECO and SPLs; it seems to suggest that more research is needed in
this direction, and this case apply to MDD-Tools.

Angeren et al. [van Angeren et al., 2011] performed a survey in the Dutch soft-
ware industry about the ecosystems companies are working in. Data was collected
from bachelor students according to given schemas. In the end the data of 17 com-
panies was considered. Authors individuate four different categories of components,
obtained from the combination of two dimensions (critical/non critical, core/con-
textual). For each category they report which factors influence the relations with
suppliers. Factors are: level of intimacy, continuity, visibility within the marked,
niche creation, product & license type, support & maintenance. According to their
schema the MDD-Tools could be considered as a critical core component, therefore
all the factors would be relevant.

Bosch [Bosch, 2009] examines how successful software product lines can evolve
to large ecosystems. He considers in particular the case in which a company starts
using a SPL for developing its own products and later open it to other actors. The
SPL evolve into a software ecosystem when the platform starts to be used outside the
organization boundaries. According to Bosch the two main reasons motivating the
transactions are: i) the impossibility for the company to sustain alone the R&D costs,
ii) the mass customization necessary in certain sectors (e.g., web) for application of
the SPL to different customers. In the case of MDD-Tools the major advantages
guiding the transitions were the need for standardization of development times, cost
and platforms, together with an easier governance of outsourced components. Bosch
proposes also a taxonomy of software ecosystems, considering the category (end-user
programming, application, OS) and the platform (desktop, web, mobile). We would
suggest to add the ”tools based ecosystem” which is somewhat similar to the end-
user programming ecosystem presented by Bosch (in both case the central element is
the tool used to develop applications) but some aspects are fundamentally different:
in particular ”end-user programming” ecosystems are based on the fact that few
investments are needed for the adoption while out suggested category (tools-based)
would imply relevant cost for teaching and supporting the developers adopting the
tool. In both cases the deep customization of the applications is based on DSLs.

Hannsen [Hanssen, 2012], similarly to us, studied the evolution of a Software-
Product-Line centered ecosystem for a period of five years. While in their case-
study the ecosystem is born in the period of interest and the SPL was adopted,
in our case-study both the SPL and the ecosystem were there from the beginning;
however in the period of interest there was a critical technological change in the
implementation of the SPL. The company considered by Hansen is smaller than
CSI (260 people employed against 1200) but it is a worlwide distributed company,
instead of a locally based company as CSI. The author describes in details the

124

4.6 – Related work

involvement of the customers as an important aspect of the ecosystem. This strong
attention to stakeholders seem to derive from the transition to the Evo method [Gilb
and Brodie, 2005]. Engaging customers became part of the culture of the company,
with reflections at different levels. While initially it required an active effort to
involve stakeholders, later the company was able to trigger a strong interest and
constitute a pool of very active partners. The company was also able to act as
a catalyst for the 60 external organizations which are basing their business of the
product line. They did it organizing conferences, opening a web portal and nurtuting
the network of partners; some of these ideas could be applied by CSI in the future
to strengthen the network of MDD-Tools’ users. This is particularly good for those
external organizations because they can easily get in touch with a large pool of
established users. An efficient integration technology was considered an enabled
for this set of extensions, customizations and interoperable solutions. The author
presents also a set of theoretical propositions defining a software ecosystem. Among
them we note i) the presence of a central referent organization, acting as hub of
the software ecosystem. In our case CSI is clearly playing this role; ii) the enabling
role of a particular technology, in our case study MDD; iii) the shift to a shared
responsibility model on the development and control of the ecosystem, this element
is present also in our case-study with the release of MDD-Tools as an open-source
platform.

Manikas and Hansen [Manikas and Hansen, 2013] conducted a systematic review
of the literature about software ecosystems (SECOs). Authors based their method
on the guidelines from Kitchenham and Charters [Kitchenham and Charters, 2007].
They considered 420 papers and included 90. Here we report a summary of their
findings: i) there are different definitions of software ecosystem being used, the ones
most widely referred come from Jansen et al. [Jansen et al., 2009] or Bosch et. al
[Bosch, 2009, Bosch and Bosch-Sijtsema, 2010b, Bosch and Bosch-Sijtsema, 2010a];
ii) the number of papers published on the topic is increasing significantly, raising
from 3 papers published in 2007 and 2008 to the 32 published in 2010 and 2011 (the
papers’ extraction was performed during June 2012); iii) almost half of the papers
are reports, while very few use empirical methods. This is an aspect common to
many other fields of the SE; iv) papers have a sort of equally distributed focus
between SE, business and management, and ecosystems relationships; v) half of the
papers refer to an existing SECO.

Bosch and Bosch-Sijtsema discuss about the impact of software product lines
and ecosystems [Bosch and Bosch-Sijtsema, 2010b]. They suggest that large-scale
software development is hindered by a too much integration-centric approach while
switching to a composition-oriented approach would significantly simplify it. To
reach this goal the factors motivating strong and close interconnections are exam-
ined in this work. Initially authors present three trends affecting large software
development (SPLs, global development and SECOs). Based on their experience

125

4 – Modeling adoption in large company: the CSI case-study

and in particular on three case study companies authors present problems common
to software intensive companies. Some of the problems derive from the software
architectures, making costly the integration and difficult the indipendent evolution
of parts of the system. Other problems could derive by engineering practices and
from the R&D organization. Finally authors present five approaches to facilitate
the transition to a more composition-oriented system: i) consider integration during
development, ii) release groupings, iii) release traits, iv) independent deployment,
and v) open ecosystem.

Lungu et al. [Lungu et al., 2010] presented a tool to visualize the evolution of
SECOs. The tools is named Small Project Observatory and it is an online visual-
ization tool focusing on super-repositories (federation of repositories). It could be
used as a supporting tool in studying the patterns of evolutions of applications and
improve reusability through the definition of processes common to the ecosystem.
That would help to pose the basis for a transition to more structured approaches,
as the one proposed by CSI.

Kilamo et al. [Kilamo et al., 2012] list a set of guidelines for successfully release
as open-source a proprietary software system and grow a proper ecosystem. Authors
derived those guidelines from applying a previously depicted process (the OSCOMM
process framework) to four different case-studies. The OSCOMM framework consists
of three phases: i) an evaluation of the readiness of the project for being opened,
ii) open source engineering the product, and, iii) measuring the ecosystem once the
project is open.

4.7 Summary

In this chapter we summarized the five years long evolution of a software ecosystem
centered on a large IT organization (CSI-Piemonte). In particular we presented
eight motifs that played a significant role in the successful deployment of a paradigm
change in such a complex ecosystem.

Although the motifs are derived from one single study – which is a limitation
to their validity –, this particular study spanned across many years and considered
hundreds of projects, we therefore think that the distilled motifs represent a valuable
contribution for deriving best practices in performing paradigm shifting within a
software ecosystem.

Some of the motifs presented played a role in creating an efficient ecosystem,
while other were important to favor the diffusion of the paradigm change. Some of
them played a role in both aspects. The diffusion was initially favoured by Incremen-
tal adoption on voluntary basis, then offering the necessary Support and Integration
in the toolchain. In the later eras complementary aspects had to be considered like
a proper RoI for adopters and a shared responsibility for the solution, obtained

126

4.8 – Modeling adoption: comparison between small and large companies

through Distributed development. The diffusion was also indirectly favored by re-
alizing an efficient ecosystem first of all with the fundamental choice of performing
Toolsmithing (with all the implications at an ecosystem level). Integration could
be also considered an element which brought to an efficient solution. Finally in-
vestments in Automatic enforcement and Generated code quality were particularly
rewarding (and sustainable) thanks to the economies of scale of the adoption at an
ecosystem level.

With this interpretative work we attempt to propose key motifs for a paradigm
shit in a software ecosystem. We believe more interpretative works are needed
in the area, to find similarities and variabilities with analogous evolutions in other
ecosystems. At that stage generalization would be possible by analyzing the different
single experiences.

In particular we believe it would be useful to compare this work with other
regional software development ecosystem studying the impact of introducing a rarely
used paradigm to a large number of developers in a specific area. The effects in
terms of know-how diffusion, the number of initiatives which independently spread
out from this effort have yet to be evaluated. We believe that local ecosystems can
lead to an unexpected number of interactions which have to be fully studied and
understood.

4.8 Modeling adoption: comparison between

small and large companies

While the technical challenges in the adoption of MDE are the same, the availability
of resources and the internal organization are very different between small and large
companies [Richardson and von Wangenheim, 2007], therefore the strategies for
adoption should consider this aspect and be planned accordingly.

The first difference is in the rate of adoption: according to the results of our sur-
vey small companies seem to use less frequently MDE in respect to large companies.
This is reflected also by the literature, where very few case studies involving small
companies are produced in respect to those involving large companies. While most
of works focus on large companies a few are available also on small companies. In
this section we try to summarize some of the differences we emerged, considering
both our experience and relevant resources.

Completeness: Cuadrado et al. present their experience in two transfer of
technology projects on two small companies [Cuadrado et al., 2013]. They sug-
gest small companies should use MDE to automatize some development activities,
while not shifting completely their prospective from code-centric to model-centric
development. This is due to the high cost which are associated with the shift. Large

127

4 – Modeling adoption in large company: the CSI case-study

companies can instead consider the transition to model-centric development because
they can afford the consequent costs in deep processes re-arrangements.

Technical vs organizational aspects: in our work and in the work from
Cuadrado et al. as well, emerge that small companies have to focus on the technical
excellence of the MDE solution; it has to be a competitive advantage, which can be
sustuainably maintained. In both cases authors underlined the necessity of model-
to-model transformations and intermediate model. In the case of large companies the
focus seem instead on the completeness of the solution proposed: for the company
to be efficient a large set of supporting tools and organizational aspects have to
be considered. Repositories for models, integrated toolchains, code checkers, all of
them need to be realized and combined to a offer a fully complete solution.

Investments: small companies are budget-driven, they have to deal with limited
time and monetary resources. As consequence they need to produce results as soon
as possible, therefore solutions are typically deployed in an incremental way. The
choice of good pilot projecets is crucial: small companies can not affort the costs
of a long trial-and-error process. Large companies can instead plan the transictions
using more time, because they typically have the resources to sustain long-term
investments.

Flexibility: in general small companies are more ready to deal with changes
[Richardson and von Wangenheim, 2007]. Employees of small companies seem more
prone to deal with uncomplete or partial solutions. Being flexibility generally re-
garded as an advantage to maintain many perceived risks on the adoption of MDE
are related to the fear of losing flexibility to due to the constraints imposed by
MDE. This fear seems less common in large organization which are probably more
accustomed with formalized procedures.

128

Chapter 5

Cross-language interactions: a
classification

In this Chapter we work towards answering to RQ B.1. Here we introduce the
concept of cross-language interactions; we explain what they are and we present a
classification schema. Most of the content of this chapter is based on our paper
presented at ESEM 2013 [Tomassetti et al., 2013b]. That was a joint work with
Antonio Vetrò and Marco Torchiano.

5.1 Introduction

Polyglotism is largely recognized as an almost ubiquitous characteristic of modern
software development projects: they use several different languages [Wampler et al.,
2010]. For instance, most trivial web applications are typically written in a general-
purpose language, e.g. Java, include some SQL queries, are visually presented by
means of HTML, formatted using CSS files, and with client-side processing imple-
mented using Javascript. Another case is the use of Domain Specific Languages
(DSLs) that are quite common when adopting a model-driven approach [Torchiano
et al., 2013].

An important side effect of polyglotism within a single project is the interaction
between languages. From previous studies [Vetro’ et al., 2012] [Tomassetti et al.,
2013c] we learned that the majority of commits in open source projects are cross-
language, i.e. they involve files written in different languages.

Identifying the interactions between artifacts in different languages (cross-
language) is important because most development environments, with the notable
exception of some platform-specific IDEs – e.g. some Android IDEs – do not provide
any support for managing them. A good knowledge of cross-language interactions
is a key factor in building a specific support into IDEs with the goal of supporting

129

5 – Cross-language interactions: a classification

development, maintenance, and comprehension activities on polyglot applications.

Two main approaches to language identification are possible. Logical interac-
tions [Gall et al., 1998] occur when two artifacts are modified in the same commit.
Semantic interactions occur when within an artifact we can find some elements that
link it to another artifact.

While the issue of language interaction is already very relevant today, the appear-
ance of language workbenches [Fowler and Parsons, 2011] let us suppose that this
issue is going to become even more important in the future. For example, with Xtext
[Eysholdt and Behrens, 2010] and GMF [Seehusen and Stølen, 2011] we can create,
textual and graphical DSLs with custom editors integrated in the Eclipse platform
with a minimal effort. Other tools like Intentional Software [Simonyi et al., 2006]
and the Meta-Programming System [Völter, 2011a] fully support the Language Ori-
ented Programming paradigm [Dmitriev, 2004] and are based on projectional edit-
ing. The existence of these tools and their usage in industrial projects [Völter and
Visser, 2010] seem to indicate that the interaction between languages in projects
will increase in the future.

Our hypothesis is that in the long run we need to support cross language devel-
opment, including design, modeling, and validation. To reach this goal we first need
to start understanding the effects of languages interaction: this work is intended as
a first step in that direction.

5.2 Related work

Gall et al. [Gall et al., 1998] proposed a definition of logical coupling between files
based on the observation of a software repository. They defined as logically coupled
two files which changed together in at least one commit. This allows identifying pos-
sible relations which cannot be easily found with a more rigorous syntactic analysis.
Another advantage of this approach is the possibility to apply it to all possible kind
of artifacts. In later work [Ratzinger et al., 2005, Ratzinger et al., 2007], Ratzinger
et al. showed that logic couplings defined on the basis of a repository’s history could
be used to find artifacts which need to be refactored (reducing the coupling). This
is a complement to syntactic coupling.

Mayer and Schroeder [Mayer and Schroeder, 2012] name the problems of ref-
erences across artifacts written in different languages as “semantic cross-language
links”. Being these links out of scope of the individual programming language, they
are ignored by most language-specific tools and are often checked only at runtime.
They propose to explicitly express constraints for these links and present three possi-
ble approaches to do that: at source code level, using language-specific meta-models,
and using language-spanning meta-models.

130

5.3 – Method

5.3 Method

We devised a research method to achieve the dual objective of identifying interaction
categories and classifying the occurrences of interactions in a real project.

The procedure we followed is made up of the six steps below:

1. screening: we identified logical interactions by selecting the cross-language
commits using the approach based on file extensions, defined in [Vetro’ et al.,
2012].

We adopted this approach to focus on a limited number of candidate pairs
since examining all possible connections between every pair of files in a large
project requires both a deep knowledge of the project itself and a huge effort.

2. commit selection: we selected the bug-fixing commits from the project version
control system.

This choice is motivated by the fact that they typically represent a focused
modifications involving a limited set of files. Considering that we are interested
in binary relations between files, a large number of files could lead to an
exponential number of possible pairs of files to be analyzed.

3. manual verification: we verified the language of the files to confirm the presence
of cross-language logical interactions in a predefined temporal range (the same
used in the previous study).

Since the previous step is based on the file extensions alone, some false posi-
tive are possible. Where different extensions actually correspond to the same
language or viceversa the same extension (or lack of) correspond to different
languages.

This manual inspection led us to classify as bash scripts files that had not an
extension. In a few cases that left us with a commit where only bash files were
modified, therefore the commit was clearly not a cross-language commit and
so it was excluded from further examination.

4. semantic interaction manual confirmation: we manually inspected the files
modified simultaneously in the same commit, using mainly the contextual
diffs of the involved files and the relative log message to identify cross-language
interactions and to assign them to a class.

In this way we progressively constructed a taxonomy of semantic interactions.

5. revision of the classification: we discussed the classification built in the previ-
ous step, merged similar categories, and defined more meaningful labels.

131

5 – Cross-language interactions: a classification

The goal of this step is to come up with a clear and precise definition of
the cross-language interaction categories and provide representative examples.
The results at this stage are presented in section 5.4.

6. semantic interaction classification: we re-processed all the commits and per-
formed a definitive classification of the cross-language interactions according
to the final taxonomy.

When several instances of the same relation were found between the same
pair of files (e.g. many Shared ID) just one occurrence was reported. Though
the same relation could possibly be counted more than once, if it appears in
distinct commits.

The result at this final stage is a set of cross-language semantic interactions
identified over a set of commits. We then conducted an analysis – presented
in section 5.5 – of such data aimed to: i) verify the precision of the logic
interaction approach in terms of semantic interactions, ii) define a frequency
profile of cross-language interaction categories.

5.4 Categories

As a result of step 5) in the procedure delineated in section 7.4, we built a taxon-
omy of the cross-language semantic interactions. The interactions between different
languages can occur in several different forms. While it is extremely common to
use more than one language in a single project, it could even be the case that dif-
ferent languages are used in the same file. For instance consider the presence of
an utterance of SQL embedded in a valid expression of an host language (typically
a General Purpose Language like Java or PHP) or the preprocessing languages as
the C preprocessor language or M4. In our work we assumed that it is possible
to identify a main or host language in which a certain artifact (e.g., a file) is ex-
pressed. We decided to focus only on interactions between distinct artifacts taking
into consideration the main language of each file.

We emphasize that the identified categories are not mutually exclusive. For ex-
ample a Java class could load an XML file (Data loading relation) and then perform
some processing on specific part of it, using identifiers for the navigation. In that
case normally the same identifier is present both in the Java and in the XML file
(Shared ID relation). In our example therefore there will be both Data loading and
Shared ID relations on the same pair of files.

In Table 5.1 we report the definition of the categories we identified. In the rest
of the section we present an example for each category. Examples are derived from
the interactions classified according to the procedure in section 7.4.

132

5.4 – Categories

Table 5.1. Categories for the implementation of language interactions
among different artifacts
Category Definition

Shared ID The same ID is used among the artifacts involved in
the interaction.

Shared data A piece of data have to hold exactly the same value
among the different artifacts involved.

Data loading A piece of data from one of the file involved is loaded
by the code in another file involved.

Generation From one of the file involved the other files involved
are completely or partially generated. Also the mod-
ification of part of a file is accepted.

Description One of the file involved contained a description of the
content of another file (a part or the whole file).

Execution One file execute the code contained in another file.

5.4.1 Shared ID - Example

A configuration file written in XML (Listing 5.1) contains the qualified name
of a Java class (Listing 5.2). The class is named S3FileSystem and it is con-
tained in package org.apache.hadoop.fs.s3; the fully qualified name is therefore
org.apache.hadoop.fs.s3.S3FileSystem.

Listing 5.1. Snippet from file File src/java/core-default.xml at commit 1058343

<property>
<name>f s . s3 . impl</name>
<value>org . apache . hadoop . f s . s3 . S3FileSystem</value>
<d e s c r i p t i o n>The Fi leSystem f o r s3 : u r i s .</ de s c r i p t i o n>

</property>

Listing 5.2. Snippet from file File src/java/core-default.xml at commit 1058343

pub l i c c l a s s S3FileSystem extends Fi leSystem {

5.4.2 Shared data - Example

Two different configuration files of Ivy have to specify the same version of a particular
library. The library is the Google Protobuffer and the value of the version is ”2.4.0a”.
The files involved are an XML file (Listing 5.3) and a properties file (Listing 5.4).

Listing 5.3. Snippet from file File ivy/hadoop-common-template.xml
at commit 1134857

133

5 – Cross-language interactions: a classification

<dependency>
<groupId>com . goog le . protobuf</groupId>
<a r t i f a c t I d>protobuf−java</a r t i f a c t I d>
<vers ion >2.4 .0 a</vers ion>

</dependency>

Listing 5.4. Snippet from file File ivy/libraries.properties at commit 1134857

protobuf . v e r s i on =2.4.0 a

5.4.3 Data loading - Example

Configuration data is loaded by Java code from an XML file, to implement a unit
test on the Configuration class.

In Listing 5.5 you can read the code of the XML file, while in Listing 5.6 is
reported the line responsible for loading the XML file.

Listing 5.5. Snippet from file File src/test/test-fake-default at commit 1126719

<!−− This f i l e i s a fake ve r s i on o f a ” d e f a u l t ” f i l e l i k e
core−d e f a u l t or mapred−de fau l t , used f o r some o f the un i t t e s t s .
−−>

<con f i gu ra t i on>
<property>
<name>t e s t s . fake−d e f a u l t . new−key</name>
<value>t e s t s . fake−d e f a u l t . value</value>
<d e s c r i p t i o n>a d e f a u l t va lue f o r the ”new”

key o f a deprecated pa i r .</ de s c r i p t i o n>
</property>

</con f i gu ra t i on>

Listing 5.6. Snippet from file src/test/core/org/apache/hadoop/conf/Test/Con-
figurationDeprecation.java at commit 1126719

s t a t i c {
Conf igurat ion . addDefaultResource (” t e s t−fake−d e f a u l t . xml ”) ;

}

5.4.4 Generation - Example

A script used for setup may generate different files. For example the bash in Listing
5.7 file generates the actual mapred-site.xml from a template.

In this case the repository contains the template file but not the generated file,
which would be present in a project using Hadoop.

134

5.4 – Categories

Listing 5.7. Snippet from file src/main/packages/hadoop-setup-conf.sh
at commit 1190035

. . .
t emp la te gene ra to r ${HADOOP PREFIX}/ share /hadoop/common/

templates / conf /mapred−s i t e . xml ${HADOOP CONF DIR}/
mapred−s i t e . xml

. . .

5.4.5 Description - Example

The documentation of the Access Control List functionalities reported in Listing 5.8
describes a functionality expressed in class AccessControlList (path src/java/org/a-
pache/hadoop/security/authorize/AccessControlList.java).

Listing 5.8. Snippet from file src/docs/src/documentation/content/xdocs/clus-
ter setup.xml at commit 998001

<tr>
<td>mapreduce . c l u s t e r . a c l s . enabled</td>
<td>Boolean , s p e c i f y i n g whether checks f o r queue

ACLs and job ACLs are to be done f o r au tho r i z i ng
u s e r s f o r doing queue ope ra t i on s and job
ope ra t i on s .</td>

<td>I f true, queue ACLs are checked whi l e
submitt ing and admin i s t e r ing jobs and job
ACLs [. .] . </td>

</tr>

5.4.6 Execution - Example

A POM file executes the code of Java class (see Listing 5.9).

Listing 5.9. Snippet from file pom.xml at commit 1195817

<doc le t>org . apache . hadoop . c l a s s i f i c a t i o n . t o o l s .
Inc ludePubl icAnnotat ionsStandardDoc let

</doc l e t>

135

5 – Cross-language interactions: a classification

5.5 Classification

The real project we selected for the analysis is Hadoop1 (See step 1 in Section
7.4). We considered 39 bug-fixing commits from the Hadoop project (step 2), that
were classified in [Vetro’ et al., 2012] as cross-language (because they contain logical
interactions). After a first inspection we discarded 3 commits because they were not
cross-language (step 3).

Out of the remaining 36 commits we found semantic cross-language relations
which we could classify in 27 cases (75%). More in details, in 11 commits we found
one interaction, in 10 cases two relations, in 3 commits we found 3 relations, in two
cases we found 4 occurrences, and in one case even 8 interactions.

We can conclude that using logical interaction as a proxy to identify semantic
interactions has an estimated average precision of 75% with a 95% confidence interval
ranging from 57% to 87%, estimated using a proportions test.

Figure 5.1 reports the frequency of the interaction categories. Of course here
we report only the relations which we were able to identify. We cannot exclude
the presence of other relations that we were unable to detect. Thus the number of
cross-language interactions we identified could be interpreted as a lower-bound of
possible existing relations. Some relations could be expressed implicitly, for example
a file could load the content of another file using a library method of which we do
not know the semantics.

Execution

Generation

Data loading

Description

Shared data

Shared ID

0 5 10 15 20 25

2%

4%

7%

18%

21%

48%

Figure 5.1. Frequency of semantic cross-language interaction categories

The most frequent category of relation is by far Shared ID (27 instances). In
12 cases we found a Shared data relation, in 10 Description, in 4 Data loading, in 2
Generation, and in 1 Execution. In this case of a Generation relation the repository
normally contains the file which represents the source of the generation – typically

1http://hadoop.apache.org

136

5.6 – Summary

a template file – but not the generated file, which would be present in a running
configuration of the system.

The most frequently involved files were xml (42 cases), followed by java (30),
properties (16) and sh (11). In 3 cases each also ac, am and spec files were involved.
In only one case we found file with avpr and c extension.

5.6 Summary

We conducted and investigation of the cross-language semantic interactions in an
open-source project. A very simple approach based on logic links – co-presence in
the same commit – is able to indicate the presence of confirmed semantic interactions
with a limited though acceptable precision (75%).

Based on the actual instances we defined a taxonomy of semantic interactions,
which provide us with a deeper understand of cross-language relations. The relations
we individuated are: Data loading, Description, Execution, Generation, Shared data,
Shared ID.

We also computed the frequency of occurrence of the individual categories. Ap-
parently about 50% of the interactions take places by means of shared ids.

An ongoing work is being devoted to the implementation of tool support for
cross-language interactions. The knowledge on the interaction categories is the main
starting point for designing tool support for cross-language interactions. In addition
the information about the frequency allow defining priorities among the different
interaction categories when building the supporting tool.

137

Chapter 6

A preliminary empirical
assessment on the effects of
cross-language interactions

In this Chapter we look into the effects of cross-language interactions, as needed to
answer the thesis research question RQ B.2. This Chapter is based on a previous
work published as [Vetro’ et al., 2012]. That work was realized jointly with Antonio
Vetrò, Marco Torchiano, and Maurizio Morisio.

6.1 Definitions

Before stating our goals and translating them into actionable research questions, we
define how we do identify and measure the languages interaction. We provide here
a list of definitions used throughout the rest of the paper.

Definition 1. Module: we considered a module each single file.

We consider a commit1 as a unit of work, consequently we suppose that files
committed together are related.

Definition 2. Intra-language commit (ILC): a commit containing a set of
modules with the same extension.

Definition 3. Cross-language commit (CLC): a commit containing modules
with different extensions.

1 We refer to the term commit as used in the context of version control systems.

139

6 – A preliminary empirical assessment on the effects of cross-language interactions

Definition 4. Cross-language commit for an extension (CLCext): a CLC
containing that includes modules with the extension ext.

Definition 5. Defect fix: a commit executed to fix a defect.

We consider a module to be cross language when it is related to modules written
in a different language (e.g., a Java file loading the configuration from an XML
file). To measure how much a module is cross language we analyze its history:
if the module was frequently committed with files written in other languages we
consider that as an indicator of interaction between the module and those files.
This interaction is measured through different variants of the cross language ratio
(CLR).

Definition 6. Cross language ratio of a module (CLRm): the CLR of a
module m is the fraction of cross-language commits in which m was involved with
regard to the total number of commits regarding the module (both intra-language
and cross-language).

Definition 7. Cross language ratio of a module with regard to an extension
(CLRm,ext): the CLR of a modulem considering as CLC only the commits involving
m and a module with extension ext.

Definition 8. Cross language ratio of an extension (CLRext): for each exten-
sion ext we compute its cross language ratio as the mean of the CLRm considering
all modules having extension ext.

Definition 9. Cross language ratio of an extension extA with respect to
an extension extB (CLRextA,extB): the mean of CLRm,extB among all modules m
with extension extA.

Definition 10. Cross Language Module (CLM): a module is cross language if
its CLR is ≥ tCLM%, where tCLM is a threshold to be defined.

Definition 11. Intra Language Modules (ILM): a module is intra language if
its CLR is < tILM%, where tILM is a threshold to be defined.

6.2 Design

The goal of this preliminary study is two-fold. Firstly we investigate the level of
languages interaction in a common project. Secondly, we verify whether the level of
interaction is related to quality problems. We look at defects as a proxy of software
external quality. We identify two research questions related to the first goal.

RQ1 How much interaction is there among the languages present in a project?

140

6.3 – Case study

The interaction is computed as the percentage of CLC among a set of commits.
First we consider all type of commits (RQ1.1), then (RQ1.2) we consider separately
the commits related to a particular activity (e.g., improvement, bug fixing, new
feature).

Once we have defined the size of the phenomenon by answering to RQ1, we will
go deeper considering the behavior of each single extension.

RQ2 Which extensions interact more?

The second research question is answered at two levels, i.e. firstly investigating
the relationship between one extension versus all the other extensions (RQ2.1), then
analyzing the most interacting pairs of extensions (RQ2.2).

We answer RQ2.1 computing the for each extension, while we answer RQ 2.2
computing the for all pairs of extensions.

The last research question is related to the second goal, i.e. investigating whether
a high interaction between languages might result in higher defect proneness.

RQ3 Are Cross Language Modules more defect-prone?

We answer RQ 3 computing the number of Cross Language Modules (CLM) with
and without defects, and the number of Intra Language Modules (ILM) also with
and without defects. Then we compare the two proportions with/without defects
by means of the F-test to see whether the proportion of Cross Language Modules
with defects is different from the one of Intra Language modules.

This metric is computed at three granularity levels:

• considering all files regardless of their extension (RQ3.1),

• considering for each single extension its level of interaction with all the other
extensions as aggregate (RQ3.2),

• considering interaction between specific ordered pairs of extensions (RQ3.3).

6.3 Case study

This exploratory study aims at understanding the phenomenon of language interac-
tion and derived quality issues. We also use it to investigate whether the method-
ology defined above is applicable. We selected as a case study Apache Hadoop2

, which is a set of libraries to support distributed data processing. We selected

2 http://hadoop.apache.org

141

6 – A preliminary empirical assessment on the effects of cross-language interactions

Hadoop because it is a mature project (it is supported since April 2006) and it is
used in many industrial applications (e.g., Yahoo, and Facebook).

Our methodology for computing the metrics defined above is based upon the fact
that Hadoop uses SVN3 to manage artifacts versions and JIRA4 to track not only
defects but any other activity that can be associated with software artifacts. Those
elements are called JIRA issues, and each project has its own set of issues. Example
of JIRA issues are the implementation of a new feature, a single implementation task,
a bug report, and so on. Hadoop developers established links between commits in
the SVN code repository to JIRA issues by systematically including issue ids in their
SVN commit comments.

We downloaded the SVN log from the Hadoop repository (last revision retrieved
is the 1233090, from 01/18/2012, the first available revision is the 776174 from
5/19/2009). We also extracted all JIRA issues from the Apache JIRA database.

We computed all modules CLRm and observed their distribution: about 30% of
modules have CLRm between 0 and 0.1, and about 55% files have CLRm between
0.9 and 1. Given these percentage and given that the remaining files have a positive
(right) skewed distribution, we decided to use as thresholds tCLM=tILM=50% to
define CLM and ILM modules.

All Bug Improvement NewFeature Subtask Task Test

0.53 0.12 0.26 0.30 0.45 0.26 0.05

Table 6.1. Percentage of cross language commits (RQ 1)

CLRext Nr files Extension

0.96 49 c
0.87 114 sh
0.72 75 properties
0.71 320 xml
0.59 4328 java

Table 6.2. CLRext (RQ 2.1)

3 http://subversion.tigris.org/

4 http://www.atlassian.com/software/jira/overview

142

http://subversion.tigris.org/
http://www.atlassian.com/software/jira/overview

6.4 – Results and discussion

extA/extB C Java Properties Sh XML

C - 0.51 0.10 0.50 0.83
Java 0.01 - 0.28 0.04 0.48

Properties 0 0.54 - 0.36 0.46
Sh 0.09 0.22 0.24 - 0.47

Xml 0.04 0.52 0.43 0.24 -

Table 6.3. CLRextA,extB (RQ 2.2)

C Java Properties sh XML

C - Inf 0 0 Inf
Java 2.79 - 0.32 0.43 0.96

Properties Inf 1 - 12.08 0.94
Sh 3.55 4.45 17.17 - 7.44

Xml 3.83 0.95 3.22 4.73 -

Table 6.4. Odds ratio of the defectivity in respect to the relation be-
tween pairs of extensions (RQ 3.3)

6.4 Results and discussion

Table 6.1 reports the percentage of cross language commits in the Hadoop repository:
53% of all commits (first column) are CLC, i.e. containing files of different languages.
Looking at the portion of CLC related to the different activities (i.e., JIRA issues),
we observe that their percentage varies with respect to the type of issue (from 2nd
to last column in Table 6.1). It goes from a minimum of 5% in commits related to
Test up to a maximum of 45% in Sub Tasks (since not all issues are linked to JIRA
issues, the mean “All” in the first column is not related to the other means in the
following columns).

RQ 1.1 answer the 53% of commits in Hadoop are cross language.

RQ 1.2 answer looking at the single activities, we derive that writing/modifying
tests or fixing bugs are activities that involve mainly a single language, while
adding new features is an activity that involves multiple types (or at least
extensions).

We now proceed to RQ 2.1 and 2.2. Table 6.2 contains the top 5 extensions
in terms of number of files: c, sh, properties, xml and java. Among them, four
extensions correspond to programming languages and one is used for configuration
files. Subsequently, we compute the CLRextA,extB for all combinations of the five
extensions . Table 6.3 reports the CLRextA,extB.

143

6 – A preliminary empirical assessment on the effects of cross-language interactions

RQ 2.1 answer all most common extensions in Hadoop are highly interacting with
other extensions (i.e., CLRext > 0.50).

RQ 2.2 answer the most frequent interactions (CLRextA,extB ≥ 0.50) are: C-XML
(0.83), Properties-Java (0.54), XML-Java (0.52), C-Java (0.51), C-sh(0.50).
Border values are: Java-XML (0.48), sh-XML (0.47) Properties-XML (0.46),
and XML-Properties (0.43).

We observe that the only pairs with frequent interactions in both directions are
Java-XML and Properties-XML. All the other pairs have frequent interactions in
only one direction. For instance, CLRXML,C = 0.04 and CLRC,XML=0.83 means
that most of the commits involving C contain also XML files, but not the other way
around.

We now focus on the last RQ, i.e. on the relation between languages interaction
and defect proneness. Table 6.5 contains metrics to answer RQ 3.1 (first line) and
RQ 3.2 (from 2nd to last line). The following columns contain, in the order: the
number of ILM with no defects and then with at least one defect, the number of
CLM with no defects and then with at least one defect, the p-value of the F-test and
finally the odds ratios (which is greater than 1 when CLM are more defect prone
than ILM).

RQ 3.1 answer considering all extensions, ILM are more defect prone that CLM
(about 5 times less).

RQ 3.2 answer considering the five most common extensions, we observe that
three extensions (XML, Properties and C) have CLM with higher defect prone-
ness, while two extensions (Java and Sh) exhibit the opposite relation.

Among the above differences, only all extensions and Java are statistically sig-
nificant (p-value ≤ 0.05).

Finally, Table 6.4 contains the odds for each pair of extensions to answer to RQ
3.3. We report in bold the values for which we obtained a p-value ≤ 0.05. We
observe 7 pairs for which ILM are less defect prone than CLM , 12 pairs with CLM
more defect prone than ILM and one pair with odds ratio =1. We consider only
values with p-value ≤ 0.05 to answer RQ 3.3.

RQ 3.3 answer four extension pairs have CLM more defect prone then ILM (C-
Java, C-XML, Properties-C, Sh-C),

five extension pairs have ILM more defect prone then CLM (C-Properties,
C-sh, Java-XML, Properties-XML, XML-Java)

one extension pair have exactly same defect proneness (Properties-Java).

144

6.5 – Threats to validity

We notice that interactions where CLM results more defect prone involve always
the C files. While interactions where ILM results more defect prone involve mainly
XML, however C is also present. An interesting fact is that the pair Sh-C is in the
first set, the pair C-sh is in the second.

RQ MN MY CN CY P Odds

all 2 1891 225 2875 89 0.000 0.26
c 2.1 2 0 46 1 1.000 Inf

java 2.1 1692 201 2239 25 0.000 0.09
properties 2.1 19 1 45 7 0.429 2.92

sh 2.1 10 5 64 13 0.162 0.41
xml 2.1 96 11 184 24 0.851 1.14

Table 6.5. Relation between classification in ILM and CLM and presence
of defects (RQ 3.1 and 3.2)

Besides these considerations, we do not have an unique answer for RQ 3. How-
ever, we observe that having languages interacting with other languages is related to
higher defect proneness for certain languages (mainly C) and specific interactions.

6.5 Threats to validity

Internal: in this exploratory case-study different aspects were not considered. In
particular we did not examine all the possible confounding factors influencing the
defect proneness of the modules. Among them the age and the size of modules
(expressed in LOC, for example) are the most relevant ones.

We discriminated between modules on their names while the same module can
change name in the course of the project. We grouped the files by their extension
while a different extension could not always indicate a different language.

Construction: we are unable to measure directly the interaction between mod-
ules written in different languages and consequently we use as a proxy their concur-
rent presence in the same commits, which may be an imprecise approximation.

External: another threat is due to selection bias: we have no particular reason
to believe that Hadoop is representative of other software projects. Of course having
considered only one project generalization of the results presented is not possible at
all.

145

6 – A preliminary empirical assessment on the effects of cross-language interactions

6.6 Summary

Although we do not have unique answers, the results and observations from this
exploratory study let us understand that the problem is worthy to be investigated.
In fact we observed that more than half of the commits in Hadoop are cross language
(at least according to our definition). However we also observed that this property
depends on the type of the activities and the extensions of the modules.

Commits related to testing or fixing bugs involve mainly a single language, while
adding new features or doing implementation sub-task are activities which involve
multiple languages (or at least extensions).

Looking at the single extensions, we verified that the most common extensions
are frequently changed together with files with different extensions. Frequent inter-
actions are generally not symmetric, and many of them involve XML.

When we look at defect proneness, we observe that for Java modules the interac-
tions with other languages (as an aggregate) is not problematic at all: we observed
that Java CLMs files are ten times less defect prone than ILMs. However, when
looking at single pairs of interactions, we notice that several pairs have CLM signif-
icantly more defect prone then ILM, especially C modules. Finally, the widespread
interaction between Java and XML apparently is not related to defect proneness.

146

Chapter 7

Spotting automatically cross
language interactions

In this Chapter we present a method for automatically spotting cross-language inter-
actions, to answer the thesis research question RQ B.3. This work was previously
published as [Tomassetti et al., 2014]. It was a joint work realized with Giuseppe
Rizzo, and Marco Torchiano.

7.1 Introduction

Most of the applications realized today are composed by artifacts written in different
languages. The Web offers an excellent case study, since the majority of the appli-
cations use several languages for both server and client side. On the server side the
typical scenario includes at least a general purpose language (GPL), SQL and some
formats to store configuration (XML, JSON, etc.). On the client side HTML, CSS
and Javascript are typically adopted. The different artifacts cooperate to execute
some tasks, as part of the application, therefore they have to communicate and be
linked together: a certain CSS rule affects a given tag, a XML file describes which
Java classes have to be instantiated, the execution of a Ruby script is affected by the
configuration reported in a YAML1 file. Different languages can be mixed even in
the same artifact, for instance consider CSS or Javascript in HTML pages or a Java
function call receiving a string which happens to be SQL code. Framework or single
projects can also adopt Domain Specific Languages (DSL) to realize specific facets of
the complex system. In Listing 7.1 we report an example of a Java statement spec-
ifying a query to a database using the Hibernate Query Language (HQL), a DSL
resembling SQL. The query retrieves all the rows from the table Employee. The

1http://yaml.org

147

http://yaml.org

7 – Spotting automatically cross language interactions

resulting rows are then converted into corresponding Java objects by Hibernate2,
a well-known Object-Relational Mapper. By convention tables and corresponding
Java classes have the same name (Employee in this case), therefore there is a cross-
language relation between the Java class and the table reference in the query: if one
of them changes, developers should consider to update the others. The specific rules
which determine how the artifacts are composed depend on the language and the
framework used: each can use its own logic to operate, creating run-time relations
between artifacts. Considering Listing 7.1, the fact this particular call receives a
string supposed to be a valid HQL code is defined by the implementation of Hiber-
nate. Instead conventions are usually not formalized explicitly, but are nevertheless
relevant to favor communication between developers and ease comprehension.

Listing 7.1. A snippet of HQL code in a Java statement.

List<Employee> employees = s e s s i o n . createQuery (
”FROM Employee ”) . l i s t () ;

The rules for cross-language relations, being determined by framework implemen-
tations or by conventions, have to be studied and to be always considered during the
development. A violation of a hard rule leads to errors which are difficult to track
because implicit relations spread across different files in different languages have to
be considered all together. Hence, even just renaming a Java class can lead to a
runtime error because the name of the class was not updated in few XML and prop-
erty files referring to it. Violating conventions could instead lead to a code which
is harder to maintain, because developers rely on these conventions for comprehen-
sion. While modern IDEs offer support to identify inconsistencies between two files
written in the same language, the developer is typically left on his own when it
comes to cross-language relations. Without refactoring support the developer has
to replicate manually the update in all related artifacts. Without navigation support
cross-language references are not immediately apparent, the developer has to know
and remember the cross-language rules determining relations and to manually nav-
igate to other files for retrieving related information. Without validation support,
a broken link is not immediately apparent. An experiment performed by Pfeiffer
et al. [Pfeiffer and Wasowski, 2012a] shows that tool support for cross-language
relation can greatly improve the developer performance. However all the existing
approaches are framework specific: they require to manually specify the rules which
govern the relations expected by a certain library. Each new language, each new
DSL, each new framework require to adapt these tools. Considering that formalizing
cross-language relations precisely can be quite difficult per se [Mayer and Schroeder,
2013] this leads to a considerable effort to implement and maintain cross-language

2http://hibernate.org

148

http://hibernate.org

7.2 – Related work

relations support.

Taking inspiration by this, in this paper we motivate the following research
question: is it possible to automatically spot cross-language relations in a variety of
projects written with different languages? Exploiting the semantics of the language
and relying on a predictive model, our approach is able to spot cross-language re-
lations with 92.2% of F13. The experiments have been conducted on an in-house
benchmark which is, together with the source code of the framework and the exper-
iment settings, publicly available at http://github.com/CrossLanguageProject.
The reminder of the paper is organized as follows. In Section 7.2 we further explain
our motivation and prior work. We present the benchmark used for the experiments
in Section 7.3. Our approach is presented in Section 7.4 and in Section 7.5 we
present the experiment results. Finally in Section 7.6 we discuss the results and we
foresee possible outlook.

7.2 Related work

Research attempts on cross-language relations are quite recent. Generally they
can be summarized as: i) to offer a classification of cross-language relations, ii)
to characterize empirically the effects of cross-language relations, iii) to provide
prototyping tool support.

Classification: in [Tomassetti et al., 2013b] the authors presented a classifi-
cation of different forms of cross-language relations, identifying six different types:
shared ID, shared data, data loading, generation, description, and execution. Of all
those types the most commonly used is shared ID. In the context of this work we fo-
cus exclusively on this kind of cross-language relations. Meyer and Schroeder [Mayer
and Schroeder, 2013] classify exclusively cross-language links implemented in Java
framework in respect to XML artifacts. The relations they consider correspond to
the category ”shared ID”, according to the classification proposed in [Tomassetti
et al., 2013b]. They built metamodels of the languages involved (Java and XML)
for this particular purpose and specified the rules controlling the cross-language re-
lations of three Java framework, deriving from them common patterns. Among the
main results, they report that specifying manually rules for cross-languages relations
is difficult.

Empirical results: in [Vetro’ et al., 2012] the authors investigated how many
of the commits of the Hadoop4 project involved more than one language and the

3By F1 we mean the F-Measure with β = 1. It corresponds to the harmonic mean of precision
and recall.

4http://hadoop.apache.org

149

http://github.com/CrossLanguageProject
http://hadoop.apache.org

7 – Spotting automatically cross language interactions

effect of being involved in cross-language commits on defectivity. Results show
that some relations are particularly negative. However results of this paper are
based on a coarse proxy for the identification of cross-language relations; considering
projects hosted on a repository, they relied on the logs for looking at the files which
have been committed at the same time. But this approach leaves the burden of
spotting manually the cross-language relations. In fact, a method to automatically
identify cross-language relations at a finer level can permit more precise empirical
investigation on their effects on a large scale, where manual identification is not
feasible. Pfeiffer et al. [Pfeiffer and Wasowski, 2012a] used TexMo in a controlled
experiments with 22 subjects to demonstrate the effects of tool support for cross-
language references. According to their results, developers having access to tool
support for cross-language references were significantly faster and more frequently
correct in locating sources of errors. Developers without this type of support instead
have difficulty to reconduct the errors which they encountered at run-time to their
ultimate source, a broken cross-language relation.

Specific tool support: possible solution to the problem consist in i) devel-
oping specific IDE support, ii) substituting existing languages with families of in-
tegrated languages, iii) implementing proper language integration inside language
workbenches. The first approach was adopted by Pfeiffer et al. [Pfeiffer and Wa-
sowski, 2012b], [Pfeiffer and Wasowski, 2013]: they realized different prototypes
integration tool support for cross-language relations into mainstream IDEs named
as TexMo and Tengi. An example of family of languages comes from Groenewegen
et al. [Groenewegen and Visser, 2008]: upon observing that the amalgam of lan-
guages used in a single web application project are typically poorly integrated they
proposed the adoption of an unique language to model all the different concerns
of web applications: WebDSL. Finally regarding language integration in the con-
text of Language Workbenches is described by Tolvanen et al. [Tolvanen and Kelly,
2010]. In their paper they describe their experience in integrating Domain Specific
Modeling (DSM) languages. They considered only DSM realized in the context of
the MetaEdit+ system, without integration with GPLs. GPLs integration is instead
possible in another Language Workbench: Jetbrains MPS. An example in this direc-
tion is described in this paper [Tomassetti et al., 2013c]. Integration in mainstream
IDEs has the great advantage to leverage environments which are already familiar
to most of the developers, but they require the implementation of specific support
for each single framework considered. On the contrary, the other solutions require
a migration but offer deeper integration, attainable with a limited effort.

150

7.3 – Benchmark

7.3 Benchmark

To the best of our knowledge, no other research attempts have been spent to spot at
fine grained level the cross-language relations. It results in a lack of gold standards
for benchmarking the performance of proposed approaches. To fill this gap, in
this paper we propose an in-house benchmark as compendium of our approach.
As described previously, the Web offers a vast number of projects written using
different formal languages each. In addition, the most used formal languages for Web
applications (HTML, JS, CSS) share intrinsically numerous cross-language relations,
which are usually hidden, making the task extremely challenging. We have then
selected a web project based on the AngularJS5 framework named angular-puzzle6.
Table 7.1 summarizes the statistics of the proposed benchmark.

Description Values

no. of different files 12
no. of formal languages involved 4

no. of lines among all files 2927
no. of manually identified cross-language relations 142

Table 7.1. Statistics of the benchmark proposed in this paper. Any artifact is
considered, excluded pictures. The number of language involved considers also
the natural language text. The number of cross-language relations is computed
considering HTML and JS artifacts (excluded lib artifacts).

Two human experts have been involved in the creation of the benchmark; the
aim was to manually detect the cross-language relations between artifacts of two
different extensions (JS and HTML), to which we excluded the AngularJS library
artifacts. We also excluded the CSS files, since the identification of cross-language
relations is easier to be spotted due to the tag selection. The relations have been
reported pair-wise; the dataset lists the src and dst files, row and column where the
relation have been spotted from both artifacts and the surface form (shared ID) of
the relation per each cross-language relation. The overall agreement score reached
so far was good. After the first annotation step, we have dedicated a cleansing
step for fixing the errata spots. The benchmark is released as public license at
http://github.com/CrossLanguageProject/goldstandards.

5http://angularjs.org

6http://github.com/pdanis/angular-puzzle

151

http://github.com/CrossLanguageProject/goldstandards
http://angularjs.org
http://github.com/pdanis/angular-puzzle

7 – Spotting automatically cross language interactions

7.4 Method

Most of the cross-language relations are implemented using a shared identifier. For
example a Javascript statement could refer a particular tag in a HTML document
by its ID. When one of the two ends of the relation is changed, the other one has also
to be updated, if the relation wants to be preserved. However not all the instances
of the same terms are related, because not all of them identify the same entity. For
instance, if we consider pairs of instances of the same term appearing in different files,
written in different languages, chances are high that the two identified entities will
be different and unrelated. Our method aims to automatically and independently
identify the cross-language relations from the languages considered and the used
framework.

To perform the classification we factorize the AST using the candidate spots as
pivots and we exploit the context of each pair. The semantic similarity measure
between each pair of local factorized ASTs is computed. In details the proposed
method consists of the following steps:

• for each artifact an AST is derived. An AST may host sub-ASTs of different
languages, corresponding to snippets of embedded languages;

• for each node the set of nodes corresponding to its context is collected;

• pairs of nodes corresponding to the same term and enclosed in artifacts of
different formal languages are spotted as potential candidates. For each pair
a semantic similarity is computed. This process is meant to narrow down a
set of features which are then used by the classification stage;

• all the candidate spots become observations of the classification model; of
these pairs of nodes the ones related will be positive examples, the candidate
which are not related but hold the same term will be the negative examples.
The learning stage is used to train the algorithm of the predictive model.

7.4.1 ASTs construction

The first stage of the process is to map each source file to its corresponding AST
representation. This allows to distinguish between keywords and relevant values
present in the source code (i.e. identifiers and literals) and to organize the data
in a logical structure on which is possible to reason about relations between nodes.
The host language of a file is determined by its extension (the assumption made is
grounded on the fact that a Java file usually contains a host Java AST). Inside the
host AST, foreign ASTs can be added. They represent snippets of other languages
embedded in the original file.

152

7.4 – Method

Consider the example shown in Figure 7.1: a snippet of HTML is reported. The
attribute onclick of the div tag contains Javascript code, in particular a call to
the function showStats. From this piece of code is derived an AST having as root
a HTML node. The Javascript snippet is appropriately parsed and a corresponding
Javascript AST is obtained. The Javascript AST is then embedded in the host
HTML AST as a child of the HTML attribute which contains the Javascript code.

<body>

 <div onclick=“graph.showStats(‘1Q’);">

 Results of the first quarter.</div>

</body>

Html::Document

Html::Tag
body

Html::Tag
div

Html::Attribute
onclick, showStats(‘2Q’);’

Html::Text
Results of the first quarter.

JS::FunctionCall
showStats

JS::VariableRef
graph

JS::StringLiteral
1Q

foreign ast

Figure 7.1. A Javascript AST embedded in a HTML AST.

7.4.2 Context

The role of the context for spotting cross-language relations has been previously
introduced by Mayer et al. [Mayer and Schroeder, 2013]. Inspired by this preliminary
consideration, we have started over an exhaustive investigation on the context in the
field of spotting automatically cross-language relations. We then consider important
the context to discriminate between instances of terms that just happen to have the
same surface form from instances which are concretely related.

Consider the example shown in Figure 7.2: the term title appears two times
in index.html and five times in app.js. The first appearance in index.html is related
to the first two appearances in app.js while the remaining instances in the two files
are also reciprocally related. They can be intuitively distinguished on the basis that

153

7 – Spotting automatically cross language interactions

the first group of instances is hosted in the context of types, while the second is
hosted in the context of puzzles.

<ul id="types">!
!<li ng-repeat="t in types" ng-class="{'selected': t.id == type}">!
! !<a ng-href="#/{{t.id}}">{{t.title}}!
!!

!

var types = [!
 { id: 'sliding-puzzle', title: 'Sliding puzzle' },!
 { id: 'word-search-puzzle', title: 'Word search puzzle' }!
];!

index.html	

app.js	

app.controller('slidingAdvancedCtrl', function($scope) {!
 $scope.puzzles = [!
 { src: './img/misko.jpg', title: 'Miško Hevery', rows: 4, cols: 4 },!
 { src: './img/igor.jpg', title: 'Igor Minár', rows: 3, cols: 3 },!
 { src: './img/vojta.jpg', title: 'Vojta Jína', rows: 4, cols: 3 }!
];!
});!

<div ng-repeat="puzzle in puzzles">!
!<h2>{{puzzle.title}}</h2>!
!…!

</div>!

Figure 7.2. Example of cross language relations organized in hierarchies.

To translate this consideration into a formalized approach we devise an algorithm
to traverse siblings node in ASTs which is language agnostic. More details about the
context extraction algorithms can be found in the source code of the project. The
outcome of the context identification steps is a set of AST nodes which constitute
the context of a given input node.

7.4.3 Features derivation

The candidate pairs of nodes, which share the same surface forms, are compared by
means of their contexts; the resulting comparison is therefore executed on the two
contexts. From each pair of contexts two different set of surface forms are extracted.
These sets are compared using state-of-the-art algorithms for instance matching
such as Levenshtein algorithm (working at word grained level), Jaccard, Jaro, and
Tversky [Navarro, 2001]. These algorithms provide a coefficient of similarity, when
the coefficient is superior to a given threshold the nodes are considered related,
otherwise they are not. Therefore they provide a raw idea whether a candidate spot

154

7.5 – Experiment and results

actually defines a valid cross-language relation. For this matter, we have considered
them as baselines in our proposal.

Further features have been derived from the context similarity, such as: the
number of words appearing in both contexts; the sum of tf-idf value of the words
appearing in both contexts; the sum of the itf-idf value of the words appearing in
both context (the itf is defined as log(1/tf)); the percentage of words of each of the
two contexts which appear also in the other; the number of words of each of the two
contexts which do not appear also in the other; the percentage of words of each of
the two contexts which do not appear also in the other. Table 7.2 proposes a recap
of the above features.

7.4.4 Classification

Starting from the derived features, we map the task of spotting cross-language re-
lations to a predictive task. The features are meant to: i) define the model and
ii) train the classifier. Inspired by Mayer et al. [Mayer and Schroeder, 2013] who
proposed a set of manually created rules, we built the classifier in order to create
a list of rules that can automatically predict whether the observation is actually a
cross-language relation. To achieve such a scope we used the Random Tree (RT)
algorithm. We then compared this algorithm with K-nearest neighbors (K-NN) and
Naive Bayes (NB) algorithms.

7.5 Experiment and results

The benchmark proposed above reports all the cross-language relations that two
human experts have manually spotted in the context of the angular-puzzle project.
Anyway, such a task covers only the true positive spots of the domain, leaving the
burden to spot also the true negative ones. The population of interest includes all
the pairs of nodes which i) are contained in files with different extensions, and ii)
share a common word; the negative ones are those pairs which satisfy these condi-
tions and are not semantically related yet. These latter pairs were automatically
individuated. The union of the two sets forms the benchmark over which we have
run our experiments. Hence, the results of our experiments are reported in terms
of correctly spots of cross-language relation in case of actually a positive case (the
pair holds a cross-relation) or correctly spot that the pair does not hold a valid
cross-language relation.

Using a correlation matrix, we verify the correlation each feature has with the
class to predict (originally the class spans from positive when the observation details
a cross-language relation, negative otherwise). The results are reported in Table 7.3.

155

7 – Spotting automatically cross language interactions

We performed a 10-fold cross validation and used WEKA-3.7.97 for running the
classifiers. Table 7.4 reports the figures achieved so far by our approach according
to three different classifiers. The RT performs better such kind of task, proving
the intuition that Mayer et al. had in their paper, that a rule based approach can
help for deciding whether a shared ID actually holds a cross-language relation. Our
approach is extremely competitive, nearly solving the problem.

Finally, in Table 7.5 we compare the figures achieved by our approach with the
ones obtained by simple approaches which leverage on instance matching algorithms.
It is evident how the cross-language spotting task cannot be solved by just context
similarity evaluation.

7.6 Discussion and outlook

We believe in the benefit of adopting the most suitable language to implement
each facet of the system. Using the best language for the task leads to polyglot
systems which include artifacts written in many languages; it also requires proper
coordination to smooth the development, improving productivity and the quality of
the developed systems. To obtain good language integration we need first of all to
recognize cross-language interactions: the approach detailed in this paper aims to
do that and it seems promising, considering the results obtained on the proposed
case-study.

In this work we proposed a language agnostic approach to spot automatically
cross-language relations. To measure the goodness of the approach we have created
an in-house benchmark, which, to the best of our knowledge, is a first attempt in
this direction. We believe that the case study we chose is particularly daunting
for the presence of different mechanisms of interactions and the mix of languages
appearing even in the same artifacts. Since we are looking forward to enlarge the
current benchmark, we have released it publicly and we hope that the community
will contribute to extend and improve it: refinements of our work as well as alterna-
tive solutions will be easily compared in this way. Using a predictive algorithm, we
are able to nearly solve the problem of spotting cross-language relations with a F1
of 92.2%. The features used have been extracted from the context of the factorized
ASTs compared pairwise. Alternative solutions are neither generic nor automatic,
therefore they require a major framework-specific effort. On the other hand they of-
fer perfect precision and recall, for the kind of cross-language relations they address,
while a fully automatic and general approach cannot.

Our prototypal implementations is based on a library wrapping a set of existing

7http://www.cs.waikato.ac.nz/ml/weka

156

http://www.cs.waikato.ac.nz/ml/weka

7.6 – Discussion and outlook

parsers8. Support for HTML, Javascript, Ruby, Java, XML, and properties files is
already implemented. This implementation is offered to the community with the
hope it will serve as a component for the realization of alternative approaches. Our
implementation is designed in such a way that the support for other languages may
be easily plugged in. To support additional languages all the language-specific work
that is required is: i) thin wrapper around an existing parser, ii) the specification
of the conditions under which another language can be added in the one considered.

As next step we want to work on generalization of our approach: we want to
test the devised algorithms on different projects, realized using different frameworks.
Then we plan to conduct empirical validation of i) the performance of our approach
and ii) the benefits of such approach of polyglot software development. We also plan
to further investigate cross-language relations which span to more than 2 different
artifacts by time. That means considering the lattice of the combinations among
the nodes extracted from the different artifacts.

8See https://github.com/ftomassetti/codemodels and its plugins.

157

https://github.com/ftomassetti/codemodels

7 – Spotting automatically cross language interactions

Name Description

shared length number of words ap-
pearing in both con-
texts

shared tf-idf sum of tf-idf value
of the words ap-
pearing in both
contexts. See http:

//en.wikipedia.

org/wiki/Tf-idf

shared itf-idf sum of the itf-idf value
of the words appear-
ing in both context.
The itf is defined as
log(1/tf)

perc. shared length [min,max] the percentage of
words of each of the
two contexts which
appear also in the
other

diff [min,max] the number of words
of each of the two con-
texts which do not ap-
pear also in the other

perc. diff [min,max] the percentage of
words of each of the
two contexts which do
not appear also in the
other

Levenshtein distance* similarity distance be-
tween two set of chars
(either two simple
words or sequence of
them). In this paper
we use the second
version of it

Jaccard distance similarity distance be-
tween two sequences
of words

Jaro distance similarity distance be-
tween two sequences
of words

Tversky distance similarity distance be-
tween two sequences
of words

Table 7.2. List of the features exploited in the proposed work.

158

http://en.wikipedia.org/wiki/Tf-idf
http://en.wikipedia.org/wiki/Tf-idf
http://en.wikipedia.org/wiki/Tf-idf

7.6 – Discussion and outlook

class
shared length 0.0616
tfidf shared -0.0084
itfidf shared 0.0861
perc shared length min 0.0864
perc shared length max 0.1703
diff min 0.0560
diff max -0.0446
perc diff min -0.0173
perc diff max -0.0549
context 0.0374
jaccard 0.0969
jaro 0.0340
tversky 0.1061

Table 7.3. An excerpt of the correlation matrix, where we highlighted the correla-
tion scores of the features to the class. From it we observe that tfidf, perc diff min,
diff max, and perc diff max are inversely correlated with the class to predict. For
such a reason, we leave these four features out of the predictive model.

P R F1

Naive Bayes (NB) 90.3 86.3 88.1

K-nearest neighbor (K-NN) 91.3 93.0 91.9

Random Tree (RT) 91.6 93.2 92.2

Table 7.4. Precision (p), Recall (r) and F-measure (F1) results of our approach
using three different classifiers.

P R F1

Levensteind=1 6.0 100 11.8

Tverskyd=0.8 12.9 43.8 19.9

Jaccardd=0.8 13.9 35.0 19.9

Random Tree (RT) 91.6 93.2 92.2

Table 7.5. Precision (p), Recall (r) and F-measure (F1) results of the baselines
and our proposed approach.

159

Chapter 8

Language integration using
language workbenches

In this Chapter we present a prototype for language integration, to answer the thesis
research question RQ B.4. This work was previously published as [Tomassetti et al.,
2013c]. It was a joint work realized with Antonio Vetrò, Marco Torchiano, Markus
Völter, and Bernd Kolb. Domenik Pavletic contributed to write Sect. 8.4.1.

8.1 Introduction

Multi-language systems development represents one of the crucial challenges in
model software development [Mens et al., 2005]. In fact nowadays not only the
size of software systems makes them complex, but also the large number of artifacts
and the coexistence of distinct though interacting languages. As a matter of fact,
the top 50 projects among the most active ones indexed by the Ohloh OSS directory1

are composed, on average, by 16 distinct languages, ranging from a minimum of 3
(openSSH) to a maximum of 71 (Debian GNU/Linux).

The possibility of having different languages that interact and cooperate to de-
liver software functionalities adds flexibility and capabilities to software develop-
ment. In fact the limitations of a language can be compensated with the capabilities
offered by others. However, interaction of languages without proper integration and
tool support might be a source for problems. As a matter of fact, we should con-
sider that current tools typically check only the consistency within a set of artifacts
written in the same language. For example, editors check that the methods invoked
by an expression in Java code actually exist in the codebase, either in the same file
or in another Java file. However, they are not able to control whether a piece of

1http://www.ohloh.net/

161

8 – Language integration using language workbenches

XML code used for configuration refers to a really existing Java class, because they
are not aware of the cross-language semantics.

Problems due to language interactions have been in some cases addressed with
ad-hoc solutions involving the development of specific supporting tools or plugins
for different development platforms. This is the case, for instance, of the Spring
tool suite which consists of a series of plugins for Eclipse offering support for the
cross-references between Spring configuration files and Java code. Similar plugins
are also available to handle references between Android XML configuration files and
Java code.

However, in general verifying the consistency across the language boundaries is
not possible because tools are not aware of the cross-language semantics.

These ad-hoc approaches are a symptom of the need for assuring some level of
consistency of the global system, also across language boundaries. The major limit
of those approaches is that they address the problem of supporting cross language
references in an ad-hoc way, i.e. for a particular relation involving a specific pair of
neighbor languages, which may result expensive and incomplete.

We advocate a mechanisms that offers tool support without involving the cre-
ation of specific editors for any peculiar use of a language, e.g. using XML for
configuring a specific aspect of a given framework.

This paper first shows the relevance of these issues (Sect. 8.2), then provides
some evidence concerning the problem deriving from language interactions (Sect.
8.3). After that it outlines a possible solution (Sect. 8.4) and describes related work
(Sect. 8.5). Eventually research agenda is also provided to guide future works on
this topic (Sect. 8.6).

8.2 Prevalence of Language Interactions

In previous Chapter 6 we presented an investigation on language interactions.We
carried on a case study on the Hadoop project, to understand the magnitude of
the phenomenon and identify possible implications. We started our investigation
observing the commits in the version repository of Hadoop, driven by the following
approximation: if a commit concerns files of different languages we assume that
those files are related. For instance, considering a commit that fixes a bug and
contains an HTML file and a CSS file: probably both files were changed in order to
fix the bug.

We called cross language commits (CLC) those commits containing files of dif-
ferent languages. In particular we define Cross Language Ratio (CLR) as the ratio
of CLC among all commits. In addition to the project CLR, we tried to understand
which were the most interacting languages by measuring the CLR for each language,
that is computed considering only the commits involving that language.

162

8.2 – Prevalence of Language Interactions

Table 8.1. Most interacting languages in a sample of five Apache projects

File Extension Hadoop Derby Forrest Harmony

All 53% 64% 66% 77%

C 96% - - 91%

sh 87% 92% 71% 74%

properties 72% 91% 77% 91%

XML 71% 88% 72% 94%

java 59% 62% 64% 77%

xsl 84% 100% 82% 99%

HTML 100% 87% 91% 99%

The rationale of computing this metric is to get a proxy of the level of interac-
tion of files written in a given language. Assuming the bi-univocal correspondence
language-extension, with this proxy it is possible to understand for each extension
whether the majority of its files interact with files of other extensions.

In the Hadoop repository we observed CLR=53%. i.e. 53 out 100 commits in
the repository were cross language. Further analyses (not yet published) on three
more Apache projects (Derby, Forrest, Harmony) confirmed the initial observation:
they show CLR respectively 64%, 66% and 77%.

Focusing on the specific languages we showed that the most interacting languages
(among the ones with more files) of the Hadoop projects were C, sh, XML, Java
and, considering also non programming languages, .properties files. CLR ranged
from 59% (Java) to 96%(C) and even 100% (HTML, but with a lower number of
files than C). Table 8.1 shows the CLR computed for common extensions in Hadoop
and in three more projects, Derby, Forrest and Harmony: with the exclusion of C
and sh, we observe very similar or higher CLR in the other projects. For Derby the
most interacting extension is xsl, in Forrest is HTML while in Harmony both xsl
and HTML.

These figures confirm the observation that the different languages used in soft-
ware projects are not sealed off from each other, but they interact. In the next
section we will discuss the problematic implications of such interactions, providing
both anecdotal and empirical evidence.

163

8 – Language integration using language workbenches

8.3 Problems Given by Language Interactions

Combining different languages inside one system can lead to possible inconsistencies
across the language boundaries.

In order to prove that interacting languages can be a source of problems in
software projects, we are going to briefly provide and discuss examples of well-
known cases (8.3.1), and to summarize the empirical evidence found in the previous
work and in followup analyses (8.3.2).

8.3.1 Anectodal Evidence

In the literature, as well as in every developer’s experience, there are several common
examples of language interactions and related problems. Here we report a few
specimens.

1) Web Applications: Web applications are developed using a plethora of lan-
guages. A typical web application uses a general purpose language for server-side
processing, SQL to access the database, some template language (e.g., JSP or
Facelets2) to generate the pages, HTML in the form of entire pages or snippets
to be combined, Javascript for client-side elaborations, and CSS to control the ap-
pearance of the page.

All these languages cooperate to produce a working software system. References
between artifacts written in different languages are therefore very common. Let us
consider an HTML tag (e.g. <input>), with a specific class or an id. It can be
referred to by:

• Javascript: for example, a function written in Javascript could verify the
correctness of the input inserted by the user, if the tag is a field, or it can be
used to react to some event generated by the user,

• Server side language: it could need to process the result of a submit in-
cluding the value of that tag, if it is a field,

• Template language: it could need to generate javascript which refers to that
particular id, or a css configuring that particular class,

• CSS: a CSS rule can be written to customize the appearance of a tag with
that id or class.

A simple typing error in the name of the class or the id of the tag would be
unnoticed by CSS (the rule will just not apply to the element), Javascript would
tend to fail silently while it could cause a run-time failure on the server side.

2http://facelets.java.net/

164

8.3 – Problems Given by Language Interactions

2) XML Configuration of Java Applications:
Java applications rely frequently on configuration written in XML files, for ex-

ample to configure Dependency Injection3 or a Web Application framework4.
These configuration files are used to achieve flexibility in the application. They

commonly drive the instantiation and binding of classes, therefore they contain
references to Java classes, expressed as strings corresponding to the name of the
classes referred. The referred classes are expected to be present in the system,
to extend a particular class, and to implement a given interface or possess some
methods: for example a getter or setter for a particular property. When these
conditions are not met the system can incur in a run-time error. There could be
more complex constraints between the different elements referred, for example if a
class is referred in some point, it should be initialized in another section of the file.

3) C and the Preprocessor:
Most of the files written in C (as well as files written in Objective-C or C++) host

directives which are interpreted by the preprocessor and are expressed in its own
peculiar language, which operates at the token level. The preprocessor directives
constitute a language per se that could be used also in different contexts, i.e. outside
C files. The interactions between these two languages – C and the language of the
preprocessor – are source of different types of errors, which can be difficult to find
and are detected only under particular configurations [Nie and Zhang, 2011]. In this
case a language is embedded into the other. This is not the only case, consider for
example the usage of SQL in different host languages.

For example a macro could obfuscate a C type or a C identifier, it could assume a
value which makes the compilation fails or it can cause more subtle errors. Consider
the example presented in Listing 8.1: here a function-like macro is used to calculate
the square of a given number. It works as expected when it receives a number literal,
but when it receives an expression having side-effects (like a++), it calculates the
incorrect result.

Listing 8.1. An example of problematic language interaction between C
and the preprocessor

#i f d e f INLINE
#d e f i n e square (x) ((x)∗ (x))
#e l s e
#d e f i n e square square
#e n d i f

i n t foo (i n t a){

3See for example Spring, http://www.springsource.org/ .
4See for example Apache Struts, http://struts.apache.org/ .

165

8 – Language integration using language workbenches

r e turn square (a++);
}

It is worth noting that while the preprocessor is frequently associated with C, it
is completely unaware of the C semantics (except for the concept of comments and
literals, which should be recognized to correctly identify preprocessor directives).

Typically the references across language boundaries are implemented by using
a common identifier. Other possible ways of combining languages are described by
Völter [Völter, 2011b] (at least for DSLs).

Unfortunately tools supporting any language are unaware of the type, the char-
acteristics or even the existence of elements with that particular identifier among
artifacts written in another language. Therefore the coherence of the whole system
depends on human code inspections or verifications at run-time, when a failure, if
noticed, can start an investigation of the problem.

This happens because the rules controlling language interactions are not ex-
plicitly formalized. Moreover typically modern IDEs support different languages
through independent editors, which are hosted on a common platform (e.g., Eclipse).
What is missing is a shared meta-model, permitting to express cross language con-
cerns, and an environment supporting the expression of these concepts, and the
enforcement of this constraints. Language workbenches offer that.

8.3.2 Empirical Evidence: Side Effects of Languages Inter-
action

In the previous preliminary work mentioned in Section 8.1, some of the authors
of this paper have examined the role of language interactions on defect proneness.
Starting from the definition of CLR (i.e., the ratio of cross language commits in all
commits), they classified modules of Hadoop in Cross Language Modules (CLM),
i.e. files with CLR ≥ 50%, and Intra Language Modules (ILM), i.e. files with CLR
< 50%.

Considering the five most interacting extensions in Hadoop, the authors observed
that three extensions (XML, Properties and C) had CLM with statistically signifi-
cant higher defect proneness, while two extensions (Java and sh) exhibit the opposite
relation. Breaking down the analysis on specific pairs of extensions, we observed
that:

• four extension pairs had CLM more defect prone then ILM (C-Java, C-XML,
Properties-C, sh-C);

• five extension pairs had ILM more defect prone then CLM (C-Properties, C-sh,
Java-XML, Properties-XML, XML-Java);

166

8.4 – Language Integration in Language Workbenches

• one extension pair had exactly same defect proneness (Properties-Java).

Subsequent analyses on Forrest and Harmony projects revealed that Java (in
Forrest), cpp and XML (in Harmony) were the languages whose Cross Language
Modules were more defect prone than Intra Language Modules.

Although these observations do not provide univocal answers, they support the
theory that particular interactions between languages could be problematic. We will
discuss in the next section our proposed solution.

8.4 Language Integration in Language Work-

benches

In Language Workbenches is possible to define different Language Components: we
introduce the concept and present a classification in Sect. 8.4.1. Later we present
our approach to integration in Language Workbenches (Sect. 8.4.2).

8.4.1 Language Components Classification

Language workbenches can be used to develop new programming or modeling lan-
guages, to extend the existing ones and mix different extensions potentially realized
independently.

Language engineers can create modular language components. Each language
component is a set of strictly related concepts used to implement a particular part
of a language. A language component can implement either the core of a language
or a single cohesive extension. A component can include different aspects of that
particular part of a language. Typically language workbenches permit not only to
implement proper aspects of the language and its notation (abstract and concrete
syntax) but also the corresponding supporting tools (editors and code generators)
which are necessary to make a language practically usable. A description of language
aspects is reported in Subsection 8.4.1. A language component can depend on other
language components. Developers can select a set of language components to be
used in a particular project. The set of concepts defined by the components selected
will determine which constructs can be used to realize the different artifacts included
in the project.

Language components are the elementary blocks designed for reuse by language
engineers and selected by developers. They represent an heterogeneous set of ele-
ments. To put some order in this large set we propose a classification based on five
different dimensions: independency, orthogonality, size, domain and completeness.

For the independency dimension two possible values are allowed: independent
or extension. An independent language component represents the core of a language

167

8 – Language integration using language workbenches

that can be used without any other language. Such a component could embed or
reuse [Völter, 2013] some other language component (for example it could reuse a
language component defining expressions) but the declared concepts can be used as
root elements of artefacts, so they act as container of constructs of the language
components included, not the opposite. An extension language component instead
declares a set of concepts which could be used to complement concepts introduced by
other components, permitting to improve the expressiveness of the original language.
The concepts introduced can not be used to describe a model which makes sense
per se.

The orthogonality defines how much a language component is reusable and in
which contexts. It is expressed on a quality scale ranging from very low to very high.
A language with an high orthogonality could be reused in every possible context
while a language component with a very low orthogonality will introduce concepts
to be reused for a very limited goal and only in particular contexts. Consider for
example a language to represent requirements (high orthogonality) and a language
to design acceptance tests for pension plans (low orthogonality).

The size of a language component can be calculated considering the number
of concepts introduced, the number of properties and relations per concept. As a
reference we report the dimensions of the language components considered .

The domain for which the language component was developed is another di-
mension. There are language components developed for a technical domain; for
example programming languages. On the opposite there are business oriented do-
mains. Consider for example a language to describe pension plans ().

Finally the completeness of a language component depends on the aspects
described for that language component. While all the language components describe
the abstract and concrete syntax of the concepts introduced, just a few specify the
dataflow aspect.

Of course our proposed classification of languages is temptative. In some cases
it is disputable the attribution to one particular value of one dimension. There
are also connections between the dimensions: very often an extension (dimension
independency) would have a lower orthogonality than an independent language.

Language aspects

A component can include different aspects of that particular part of a language. The
set of language aspects which can be described depend on the nature of the language
workbench used. Jetbrains MPS is quite comprehensive and permit to describe a
large set of language aspects. Other language workbenches have frequently a smaller
set of supported aspects. While abstract and concrete syntax have to be defined for
each language component all the other aspects are optional.

This is a list of the language aspects we considered:

168

8.4 – Language Integration in Language Workbenches

• abstract syntax it defines the underlying concepts expressable using the
language, the relations between concepts and the information associated with
each instance of a particular concept,

• concrete syntax it defines the notation, i.e. the way each concept is repre-
sented,

• typesystem rules this aspects collect rules for calculating the type associated
with different contexts and conversion rules between types,

• dataflow it defines in which order and under which condition the code spec-
ified using the language is executed. For example it would specify that the
code contained in the then block of an if is executed only when the condition
is true while the condition itself is always evaluated,

• translation this aspect specifies how to translate from the language defined
to a lower level language. It can specify different intermediate transformations
until the code is translated to a language which can be compiled or interpreted,

• constraints it defines constraints for the relations between elements or se-
mantic error checking (syntactic error checking can be directly obtained from
the abstract and concrete syntax),

• refactoring this aspect collects refactoring operations which can be invoked
from the editor on elements of the language. An example is the possibility to
generate automatically getter and setter for a field.

Example of classification

169

8 – Language integration using language workbenches
T

ab
le

8.
2.

j.
m

st
an

d
s

fo
r

je
tb

ra
in

s.
m

p
s,

c.
m

.c
st

an
d

s
fo

r
co

m
.m

b
ed

d
r.

co
re

,
c.

m
.c

c
st

an
d

s
fo

r
co

m
.m

b
ed

d
r.

cc
.

in
d

.
=

in
d

ep
en

d
en

t,
ex

t.
=

ex
te

n
si

on
,

se
m

.
=

se
m

an
ti

c,
sy

n
=

sy
n
ta

ct
ic

.
R

eg
ar

d
in

g
th

e
co

m
p

le
te

n
es

s
th

e
ab

st
ra

ct
an

d
co

n
cr

et
e

sy
n
ta

x
ar

e
n

ot
re

p
or

te
d

b
ec

au
se

p
re

se
n
t

fo
r

ea
ch

co
m

p
on

en
t.

C
=

co
n

st
ra

in
ts

a
s-

p
ec

t,
D

=
d

at
afl

ow
as

p
ec

t,
G

=
ge

n
er

at
io

n
as

p
ec

t,
T

R
=

tr
an

sl
at

io
n

as
p

ec
t,

T
Y

=
ty

p
es

y
st

em
as

p
ec

t.
In

d
.

=
In

d
ep

en
d

en
cy

,
O

rt
.

=
O

rt
h

og
on

al
it

y,
D

om
.

=
D

om
ai

n

L
an

gu
ag

e
co

m
p

on
en

t
D

es
cr

ip
ti

on
In

d
.

O
rt

.
S

iz
e

D
om

.
C

om
p

le
te

n
es

s

C
D

G
T

R
T

Y

j.
m

.b
as

eL
an

gu
ag

e
im

p
le

m
en

ta
ti

on
of

th
e

J
av

a
la

n
gu

ag
e

in
d

.
lo

w
-

T
7

7
7

7

j.
m

.b
as

eL
an

gu
ag

e.
lo

gg
in

g
lo

gg
in

g
p

ri
m

it
iv

es
ex

t.
ve

ry
lo

w
-

T
7

7

j.
m

.b
as

eL
an

gu
ag

e.
ex

te
n

si
on

M
et

h
o
d

s
ex

te
n

si
on

s
of

cl
as

se
s

w
it

h
ex

-
te

rn
al

m
et

h
o
d

s
ex

t.
ve

ry
lo

w
-

T
7

7
7

j.
m

.b
as

eL
an

gu
ag

e.
u

n
it

T
es

t
la

n
gu

ag
e

to
sp

ec
if

y
u

n
it

te
st

s
ex

t.
lo

w
-

T
7

7
7

7

j.
m

.x
m

l
im

p
le

m
en

ta
ti

on
of

th
e

X
m

l
la

n
gu

ag
e

in
d

.
lo

w
-

T
7

7

j.
m

.x
m

lS
ch

em
a

im
p

le
m

en
ta

ti
on

of
th

e
X

m
l

S
ch

em
a

la
n

gu
ag

e
in

d
.

lo
w

-
T

7
7

c.
m

.c
.b

as
e

im
p

le
m

en
ta

ti
on

of
th

e
m

b
ed

d
r-

C
la

n
gu

ag
e

in
d

.
lo

w
-

T
7

7
7

c.
m

.c
.p

oi
n
te

rs
ex

t.
ve

ry
lo

w
-

T
7

7
7

7

c.
m

.c
c.

re
q
u

ir
em

en
ts

in
d

.
ve

ry
h
ig

h
-

B
O

7
7

7
7

c.
m

.c
c.

va
r.

an
n

ot
at

io
n

s
ex

t.
h

ig
h

-
T

7
7

7

170

8.4 – Language Integration in Language Workbenches

We applied our classification to a set of language components and reported it in
Table 8.2.

In particular we classified:

• components of the baseLanguage, which is the name used for the implemena-
tion of Java inside MPS. The baseLanguage is shipped with the IDE,

• the XML and XML Schema languages, also provided by Jetbrains,

• components from mbeddr5, an extensible variant of the C language.

8.4.2 Approach to integration

Herein we present a preliminary approach to obtain seamless language integration
with full tool support in the context of language workbenches. Our reference imple-
mentation uses the Jetbrains MetaProgramming System6 (MPS) but it is not lim-
ited to it: it could be implemented also for the Eclipse Modeling Platform [Budinsky
et al., 2003] or other Language workbenches (e.g., Spoofax [Kats and Visser, 2010])
as long as the Language Workbench considered supports the languages of interest.

MPS is a projectional editor: it means that the abstract information underlying
the model (something similar to the Abstract Syntax Tree) is persisted indepen-
dently from the concrete syntax of the language. This is radically different from
what happens with text editors. There are many benefits with this choice, but a
very important one is that no parsing is necessary. In this way languages can be
freely evolved and combined without the risk of obtaining an ambiguous grammar.
The models are then projected, hence they are represented in a form suitable for un-
derstanding and editing by the user. Typically these projections are textual but they
could also be graphical. Different artifacts can be later generated from the models:
for example compiled java classes or the concrete XML files to be distributed within
the compiled system.

We chose MPS for the completeness of the tool and because some of the authors
acquired experience with this environment in the context of the mbeddr project7.
Moreover MPS is distributed with language plugins which permit to to operate with
Java and XML out of the box.

For the sake of simplicity and because of space constraints, we will present our
approach using a working example of language interactions involving the most com-
mon pattern: references across two different languages.

5http://mbeddr.com. Note that the authors of this paper are contributors of the mbeddr
project.

6http://www.jetbrains.com/mps/
7http://mbeddr.com

171

8 – Language integration using language workbenches

Let’s consider a simple logging framework which obtains the configuration from
an XML file. The configuration file specifies for each class the level of verbosity
of the associated instance of the logger. This mechanism is for example used by
Log4J8.

We start by creating some Java classes and an XML model for the configuration
of the framework. Both Java classes and the XML model are edited inside MPS.

MPS is capable, without any extension, of editing an XML model and inserting
the name of the Java class we want to configure as simple text, as shown in Figure
8.1. The XML file generated is shown in Figure 8.2.

Figure 8.1. Editing the XML configuration file inside MPS without any extension.

Figure 8.2. The XML file generated opned in a text editor.

This system is brittle: if the user inserts a typo, or the referred class is deleted,
renamed or moved to another package the system will incur in an error which the IDE
is not able to detect. Moreover the user has to type long class names (including the
name of the package, to be univocal), which is both error-prone and time consuming.

Our approach consists in creating particular elements to hold references from one
language inside artefacts of other languages. In this case we created a particular
element which permits to represent at the appropriate semantic level a reference to
a Java class inside an XML document. Using the terminology of MPS, we created
a new Concept named JavaClassRefAsXmlContent. This concept:

• extends XmlContent (which represents the content of XML tags). In this way
it is possible to insert instances of JavaClassRefAsXmlContent in all the places
where instances of XmlContent are allowed,

8http://logging.apache.org/log4j/

172

8.4 – Language Integration in Language Workbenches

• has a reference to the Concept ClassConcept (which represents Java classes).
We named this reference “class”,

• has specific scoping rules for the reference “class”,

• when generation is invoked, has its instances substituted by the full name of
the referred class. The full name is obtained concatenating the name of the
package containing the class with the name of the class itself.

The implementation of this mechanism required only a few minutes.
MPS provides automatically autocompletion for the new Concept, considering

the scoping rules we specified. The result obtained is visible in Figure 8.3. This
mechanism in addition to offer autocompletion out of the box (therefore saving the
user from writing long names, an error-prone activity), guarantees automatically
consistency: renaming or moving a class the reference is automatically updated and
the correct value is inserted during the generation phase. If the class is deleted the
reference is recognized to be broken and the editor presents an error message, as
shown in Figure 8.4. It is possible also to navigate the reference, hence from the
XML file it is possible to click on the name of the referred Java class and open in
in the editor.

Figure 8.3. The system showing autocompletion.

Figure 8.4. The system showing a broken reference.

This simple implementation offers a description of the level of language inte-
gration which is possible to achieve inside language workbenches with a very small
effort.

While the simple example we presented deal with cross-language references, we
plan to investigate also other kinds of interactions in the future.

Other mechanisms like the use of annotations of the use of custom persistence
are also possible: they are not discussed in this article but they represent a future
work.

173

8 – Language integration using language workbenches

8.5 Related Work

In the literature for language integration it is possible to identify two main threads:
(i) approaches applicable to language families which permit to have a strong control
on the definition of the languages and (ii) approaches with more general applicability.

8.5.1 Approaches Working on Family of Languages

Upon observing that the the amalgam of languages used in a single web application
project are typically poorly integrated [Groenewegen and Visser, 2008], Groenewe-
gen et al. propose the adoption of an unique language to model all the different
concerns of web applications: WebDSL. They discuss the integration of an access
control policy inside WebDSL. They propose to express these policies separately
and then weave them inside WebDSL. In this way WebDSL remains unaware of the
access control policies, while the language used to describe access control policies is
created embedding knowledge of WebDSL. From this prospective we could consider
this language as being part of the ”family” of WebDSL. The approach of creating
family of DSLs with built-in language integration is common (another example is
Epsilon [Kolovos et al., 2006]). Language integration across languages of the same
family, built with this particular goal in mind, is easier, w.r.t. integration among
two languages not created specifically to be integrated.

Barja et al. [Barja et al., 1994] present a system based on the integration of a
logic query language with an imperative programming language in the context of
an object-oriented data model. They first discuss various possible approaches for
the integration of the two languages and the implementation of one of them. Also
in case the languages were already developed with the goal of language integration,
they therefore constitute a family of DSLs.

Tolvanen et al. [Tolvanen and Kelly, 2010] describe their experience in integrat-
ing Domain Specific Modeling (DSM) languages. They do not consider integration
with general purpose languages because they intend to take advantage from the fact
that companies have full control of the individual DSM languages developed for in-
ternal used and how they can be integrated. This is fundamentally different from
the general case of having to integrate arbitrary languages, without the possibility
of modifying their definition. They discuss the case of integration based on string
matching and the possibility of direct reference. They consider the possibility to
combine both approaches. The second one relies on the particular technology used
to realize the DSM, the MetaEdit+ system9.

9MetaEdit+ Workbench 4.5 SR1 User’s Guide, http://www.metacase.com/support/45/manuals/

174

8.5 – Related Work

8.5.2 General Approaches

Mayer et Schroeder [Mayer and Schroeder, 2012] name the problems of references
across artifacts written in different languages as “semantic cross-language links”.
Being these links out of scope of the individual programming language, they are ig-
nored by most language-specific tools and are often checked only at runtime. They
propose to express explicitly constraints for these links and present three possible
approaches to do that: at the source code level, using language-specific meta-models,
and using language-spanning meta-models. Of these approaches they chose the sec-
ond, while we advocate the third, which permits to reuse a common API and, in the
case of language workbench, is already available without the necessity of developing
it. Their approach is named XLL and it permits to automatically identify semantic
cross-language links, correct or broken, and support the user in the activities of
program understanding, analysis and refactoring. XLL requires to develop for each
language considered:

• a meta-model specific for each language considered. The meta-model should
contain all the information needed to individuate possible link instances, i.e.
it should not necessarily represent the entire language.

• a mechanism to list the artifacts of the languages and instantiate for each of
them a model pertaining to the language specific meta-model,

• an adapter to locate bindings to the refactoring capabilities of the IDE where
the implementation of the approach is realized.

The approach requires then to describe possible type of links, describing for each
link the nature of the element involved in the link.

Using information obtained from models of the artifacts and description of the
types of links, the system is able to calculate successful and unsuccessful links.
Continuous recalculation of the state of links is performed in background. The
authors present a protypal implementation for the Eclipse platform and discuss two
kinds of relations. The main advantage of this approach, is the possibility to be
implemented as a plugin for the IDE of choice. On the other hand this approach
requires a considerable effort to develop language specific adapters, and it is limited
in refactoring capabilities. The authors state that their mechanism of refactoring:
i) could fail under certain condition, ii) it is limited by the availability of refactoring
bindings in the IDE of choice (which the authors report to be available for Java and
in some form for Ruby, on the platform considered for the implementation), and
iii) consider only the rename refactoring. Moreover it is not able to capture manual
name changing which are not performed through explicit refactorings. Navigability
seems to be limited to the artifict, not to the specific element involved in the link,
which our approach permits. Both ours and their approaches support program

175

8 – Language integration using language workbenches

analysis, but while their require the development of language specific artifacts, our
require almost a null effort and provide a far better tool support in respect to
navigability and refactoring.

Pfeiffer realized a system called TexMo [Pfeiffer and Wasowski, 2012b] which
permits to express references between artifacts written in different languages, but
not to express other kind of constraints. It is realized as an Eclipse plugin and
it is intended to be used instead of the original editors provided inside Eclipse. It
uses a syntactic universal representation of all the languages supported. I.e., for each
language has to be provided an adapter generating models (instances of the universal
metamodel) from the concrete artifacts (e.g., java or xml files). Our approach do
not require to recreate editors but instead permit to simply enrich the industrial-
strength editors already available in MPS. It does not resoirt on a limited universal
metamodel, but instead use the MPS representation of the language, which permits
to consider every aspect of the language.

Pfeiffer et al. [Pfeiffer and Wasowski, 2012a] used TexMo in a controlled experi-
ments with 22 subjects to demonstrate the effects of tool support for cross-language
references. They provided to the subjects two different instances of TexMo: one with
the support for cross-language references enabled and one with it disabled. Results
show a significative improvemente in the ability to correctly locate the source of
errors (which could be unnoticed or lead to run-time failure, when such tools sup-
port is not available). An important result is in the different way errors are located:
while developers having tool-support for cross-language references locate correctly
the source of errors (i.e., the broken reference), other developers barely find the
effect of error, but are not able to understand the reason of the error, at least not
in the short time allotted for each task (10 minutes).

8.6 Conclusions and Research Agenda

Almost every non trivial system is developed using a set of languages. While using
the proper language for each task helps the productivity, the side effect is to incur in
problematic language interactions which can lead to inconsistency and errors which
are not recognized at development time and cause errors during the execution.

We are convinced that Language workbenches offer a solution to these problems,
making possible to specify and enforce constraints. Tools can be built with a minimal
effort, which provide a complete support and help developing consistent systems.

While this approach seems very promising there are different aspects which re-
quire more work. Therefore we would like to conclude this paper presenting a list
of aspects which we think deserve further investigation.

Empirical assessment of the problems related to language interactions:
to the best of our knowledge, we are not aware of any empirical study considering

176

8.6 – Conclusions and Research Agenda

the effects of languages interactions, with the exclusion of our previous work (see
Sect. 6). The metrics provided in that preliminary study however need further
validation: in breadth – more projects should be analyzed – and in depth – careful
analysis of the detected interaction–. Probably better proxies to measure the level
of interaction of a languages are needed. In addition to that, a more qualitative
analysis on the projects already analyzed might offer both a validation of the metrics
and the creation of a first catalog of the most frequent problems when languages
interact. Finally, we believe it is important to keep on studying the effects on defect
proneness caused by languages interactions, and to extend the investigation on the
on the effect on productivity and code maintainability;

Categorize language interaction mechanisms: in the literature only cross
references implemented through common identifiers are discussed. Other possible
interactions are not described at all. An ontology of the kinds of interactions would
be a relevant contribution. A good starting point would be the categorisation of
language modularisation for DSLs as presented by Völter [Völter, 2011b].

Techniques to express cross language constraints: while the simple exam-
ple we showed in section 8.4 permits to understand the potential of using Language
workbenches for language integration, complete approaches have to be developed
and validated in practice, possibly in different domains and on projects of different
sizes;

Queries involving multiple languages: a more mature language integration
would permit to query the system under development, for example about all the ref-
erences to a particular element, including cross-language references. The possibilities
of global queries as opposed to single-language queries have yet to be explored,

Custom persistency: the example we presented was based on the editing of
XML and Java models, stored in the MPS proprietary format. One of the recent
features of MPS is the possibility to use custom format for persistency (the same
feature is present as well in other language workbenches). It would be possible
therefore to edit XML files in MPS, while storing them as XML files, instead of using
the MPS persistency format. We believe that the diverse persistency mechanisms
should be investigated and assessed.

177

Chapter 9

Conclusions

With this thesis we had the goal to reach a better understanding on polyglot software
development, considering in particular the role of modeling and domain specific
languages.

Languages are the tool of the trade for software development; as the challenges
faced by our field grow in complexity, the need for better tools grows as well.

Across the decades we have seen the languages we use to evolve, permitting
higher level of abstractions, moving from languages shaped on the mechanics of the
machines executing programs, to languages designed to fit more naturally our way
of thinking.

Higher abstraction is a goal that can be pursued through different paths. One
way which got some attention by practitioners in the last decades is MDD, in alter-
native or in combination with DSLs. We believe these approaches are particularly
appealing because they empower developers with the possibility to shape their own
tools and to later use them for providing solutions. We examined these approaches
to better understand expectations and problems: from there we can perform a reality
check useful to drive future research in higher level abstraction mechanisms.

We believe in particular in the necessity of using the best tool, hence the best
language, for the task at hand. This of course leads to usage of many languages in
the same project. From that a question arises: how can we blend together artifacts
written in different languages in a cohesive system? Within this thesis we tried
to understand the problems of language integration, and to provide some tentative
solutions.

In this final chapter we first present some answers to our research questions (Sect.
9.1). Then, from the results of the first set of research questions (A.1-A.5), we derive
a set of practical implications which could interest mainly practitioners (Sect. 9.2).
The second set (B.1-B.4) instead contribute ideas for future research (Sect. 9.3).

We close this chapter and this thesis by providing some final remarks (Sect. 9.4).

179

9 – Conclusions

9.1 Answers to research questions

Here we propose our answers to the research questions introduced in Sect. 1.4.

RQ A.1 Which are the benefits expected and attained from modeling and DSL
adoption?

Modeling and DSLs are used to obtain a range of benefits which can be grouped
in two clusters. The benefits of each cluster are commonly expected to be at-
tained together. In one cluster we have Design support, Maintenance support,
Improved documentation, in the other cluster there are Productivity, Platform
independence, Reactivity to changes, Quality of software, Flexibility and Stan-
dardization. This tells us there are different ways to look at modeling.

Benefits from the first cluster are more easily attained: 52%-68% of the prac-
titioners expecting them manage to achieve them. Benefits from the second
cluster instead are rarely achieved (34%-52%).

We have seen that the most common benefits are obtained independently of the
specific techniques adopted while the possibility to achieve the most difficult
can be favourably affected by employing specific techniques. In this respect
Model interpretation, Toolsmithing and DSLs can be useful.

RQ A.2 Which are problems limiting or preventing modeling and DSL adoption?

As for the benefits, we can also group problems in two clusters.

The first group of problems is mainly reported by practitioners who only oc-
casionally employed modeling; these problems hinder adoption but do not
completely prevent it. The other problems were instead reported by prac-
titioners who decided to not use modeling at all; it can be seen as a set of
problems preventing completely the adoption.

In particular Refusal from developers and Inadequacy of supporting tools fall
in the first category, while all the other problems considered fall in the second.
From the second group come the three most common problems which are: Too
much effort required, Not useful enough and Lack of competencies.

RQ A.3 Which are the processes and techniques used for modeling and DSL?

UML is by far the most used modeling language, but only a few practitioners
adopt UML Profiles. DSLs are rarely used. Textual DSLs are used the 50%
more than graphical DSLs.

180

9.1 – Answers to research questions

Models are written almost exclusively by technical personnel. Domain experts
are involved rarely (11% of the times) and always together with technical
personnel.

Among the specific techniques code generation is the most common, while
model interpretation, model transformations an toolsmithing are rarely em-
ployed.

The amount of application code is commonly below 50% but there is a large
variability. Automatic generation targets different parts/tiers of the system,
the most common ones are SQL scripts, presentation logic and architectural
code.

Model interpretation is rarer than code generation (adopters are circa one
third of the adopters of code generation). It is interesting to note that com-
panies executing models generate automatically a significantly larger amount
of code than companies not executing them. This result suggests that model
interpretations and code generation are not mutually exclusive alternatives.
Similarly also model transformation adopters tend to generate a lot more code
(around 80% of the code of each module).

These results suggest a separation between basic and advanced users, with the
later group able to master and combine different sophisticated techniques.

RQ A.4 Which are the characteristics of adoption of modeling and DSL in small
companies?

The transition to a complete model-centric development require such invest-
ments which can be often not affordable for small companies. Moreover many
small companies can not shape freely their processes, because often they act as
sub-contractors. For these reasons small companies tend to focus on incremen-
tal changes: they can profitably use modeling and code generation to improve
the productivity of existing approaches, by complementing them rather than
fully replacing them.

What seems crucial is the ability to provide benefits with a limited investment
and in a limited time-frame.

On their side small companies enjoy more flexibility and willingness to ex-
periment with new techniques. This characteristic has not to be hindered by
MDD, which is often regarded as rigid.

RQ A.5 Which are the characteristics of adoption of modeling and DSL in large
companies and software development ecosystems?

181

9 – Conclusions

The adoption of game-changing approaches like model-centric development in
large, established companies requires to face a lot of organizational challenges.

Technical problems can be reasonably easily solved with the necessary invest-
ments but a large company need to consider side aspects like model versioning,
proper training, and evangelization.

Some of the problems we have seen in RQ A.2 are particularly relevant in
large companies. While small companies can easily share the knowledge about
modeling, the dissemination has instead to be carefully planned and properly
executed in a large company. The problem of missing competencies is partic-
ularly important because the company has to consider the availability of the
relevant skills in the job market of reference.

Moreover a large company can often shape its ecosystem, instead of adapting
to it, and it can afford to plan long-term investments.

RQ B.1 How do languages interact?

Languages interact through different mechanisms. We proposed a classification
which includes:

• Shared ID: the same ID is used among the artifacts involved in the inter-
action,

• Shared data: a piece of data have to hold exactly the same value among
the different artifacts involved,

• Data loading: a piece of data from one of the file involved is loaded by
the code in another file involved,

• Generation: from one of the file involved the other files involved are
completely or partially generated. Also the mod- ification of part of a file
is accepted,

• Description: one of the file involved contained a description of the content
of another file (a part or the whole file),

• Execution: one file execute the code contained in another file.

Of all these different kinds of interactions research focused almost exclusively
on the first one, Shared ID. It appears to be the most common and probably
also the easiest to formalize.

RQ B.2 Which are the effects of language interactions?

182

9.1 – Answers to research questions

While there are different possible effects of language interactions on software
development we started to explore those on defectivity. Other effects, most
notably on productivity and comprehension, have still to be looked at. In the
meanwhile, results from other researchers suggest that cross-language interac-
tions greatly affect both of these aspects during maintenance activities.

Concerning defectivity we do not have unique answers: our results show that
the problem is worthy to be investigated, given that most of the commits
of the project examined are cross language (at least according to our coarse
definition). However we also observed that this property depends on the type
of the activities and the languages of the modules. Commits related to testing
or fixing bugs involve mainly a single language, while adding new features or
doing implementation sub-task are activities which involve multiple languages
(or at least extensions). When we look at defect proneness, we observe that
for Java modules the interactions with other languages (as an aggregate) is
not problematic at all. However, interactions between some pairs of languages
lead to a significantly higher error proneness. This is true for many relations
involving C modules. Finally, the widespread interaction between Java and
XML apparently is not related to defect proneness.

RQ B.3 How can we identify language interactions?

All the prototypical solutions proposed by other researchers are based on the
manual identification and formalization of the framework specific rules deter-
mining language interactions (e.g., between Java and XML files when adopting
the Spring Inversion-of-Control framework).

We investigated a fundamentally different approach which has the benefits
of being general and automatic. The evaluation of our approach is still very
preliminary and our results need to be confirmed with successive experiments.
However we can affirm that our approach based on polyglot Abstract Syntax
Trees and context exploration seems promising.

The library we developed is able to build polyglot ASTs (in which snippets of
embedded languages are recognized and properly parsed). On these polyglot
ASTs pairs of nodes containing the same terms are identified. These candidates
are then classified as related on not depending on a comparison of their context
(by context we mean the set of nodes surrounding the nodes of interest).
Different metrics deriving from the Natural Languages Processing field are
used to compare the contexts. Those metrics are combined using Machine
learning techniques.

Very preliminary results report a precision and a recall superior to 90% for
the resulting algorithm.

183

9 – Conclusions

RQ B.4 How can we offer tool support for language integration?

Other researchers have realized tool support implementing specific framework
support on widespread IDEs as Eclipse. Yje most relevant features are:

• Identification of relations: cross-language relations should be immediately vis-
ible for the developer.

• Navigation: the developer should be able to easily navigate between the dif-
ferent entities involved in the relation.

• Refactoring support: refactoring should preserve relations.

• Validation: broken relations should be identified and conveniently reported to
the developer.

Differently from other approaches we believe that language workbenches are the
IDEs of choice to perform language integration. Our approach, still preliminary,
permits to offer all the important characteristics of required tool support with a
fraction of the effort. This is possible because these tools typically implement differ-
ent languages using the same underlying technology (a common meta-metamodeling
facility). In this way the relations between the different languages can be easily im-
plemented in terms of that common technology. To permit the integration between
the two languages the language designer has just to introduce specific elements which
acts as bridges, permitting to insert in a language sentence a reference to an element
of another language. In this way the semantic gap can be easily covered permitting
to offer Identification of relations and Validation. The facilities offered from the
tooling permits to obtain almost automatically Navigation and Refactoring support.

9.2 Practical Implications

The adoption of modeling and DSLs is associated with the gain of a set of benefits.
Unfortunately most of these benefits are not easily attained. Our first contribution
to practicioners is the study of the relation between the possibility to attain a certain
benefit and the adoption of specific techniques: from that we can derive guidelines
to design MDD and DSLs based solutions.

The problems limiting the adoption of MDD and DSLs can be seen as techno-
logical, related to perceptions and to knowledge.

We believe technological problems are being solved by recent advances in tool-
ing: new language workbenches permit a greater productivity. As they become

184

9.3 – Outlook

widespread we expect a reduction of practitioners reporting Inadequacy of support-
ing tools and Too much effort required. We as a community, need to perform a
correct evangelization about the technological progresses of MDD and DSL tooling.

There is a misconception about MDD and DSLs which prevents a larger adoption
(Refusal from developers and Not useful enough). From the literature we know MDD
and DSLs can provide significantly benefits to adopters and our results reinforce
these findings. Still, in some context there is a resistance in accepting MDD. This
can be due to misconceptions developed on particular flavours of modeling (e.g.,
MDA and UML based solutions) or to the role changes caused by MDD. This last
aspect connects to the necessity of rethinking processes and roles when moving to
model-centric development.

Finally, we believe the lack of knowledge is the remaining problem hampering
MDD adoption. We believe that universities need to invest more in providing the
necessary skills to students, considering not only basic modeling techniques based
on UML but also other topics which are currently neglected: i) UML Profiles and
tools to develop DSLs, ii) model interpretation and model transformations.

9.3 Outlook

Cross-language interactions were studied by few other researchers before us. In our
opinion both the directions we took working on this topic should be pursued in the
future: we need to understand the phenomenon and provide solutions.

We tried to explore different aspects of the problem. At this stage we believe it
is not possible to offer definitive answers, therefore we discuss an outlook to future
work in all the directions we examined so far.

Forms of Cross-language relations We need to support our proposed classifica-
tion with more empirical evidence. Are there other types of relations? Which
are the most used ones? Quantitative data would be important to understand
the relative importance of the different types of relations. It would be im-
portant also to study the typical patterns which are used with each kind of
relations. While an initial list of patterns for Shared-ID relations was proposed
[Mayer and Schroeder, 2013] we cannot confirm that list is complete moreover
all other types of relations are not yet studied in depth.

Effects of Cross-language relations The effects of cross-language relations on
productivity, defectivity and program comprehension have to be fully studied.
Until now we are aware of our small work on defectivity (Sect. 6) and of
an experiment which shows the positive effects of support for cross-language
relations [Pfeiffer and Wasowski, 2012a], indirectly supporting that problems
are introduced by cross-language relations.

185

9 – Conclusions

Automatic identification of Cross-language relations Our approach is the
only one we are aware of in this direction. Though it still misses a proper
validation. To do that we plan to work on a golden-set to be shared with the
community. This golden-set could become an important tool for comparing
the performances of alternative approaches. While we already released a seed
of that golden-set we plan to develop it in the future.

Tool support for Cross-language relations Tool support for specific frame-
works has been implemented in some commercial or academic tools. However
there are not any attempts to provide general solutions yet. In our opinion
the main problem is semantic integration. This problem is greatly reduced in
the context of Language Workbenches. The adoption of this kind of solutions
require a significative transition cost, but the benefits for language integra-
tion are great. In such environments combining languages can be done with
a very limited effort, while this is definitely not the case with traditional en-
vironment, which require a major effort to bridge the semantics of different
languages. We hope to see on one side the development of solutions employing
Language Workbenches of other common meta-metamodelling solutions, on
the other side we think more empirical evidence is necessary, to motivate and
guide successive tool implementations.

9.4 Final remarks

Recently new tools and techniques emerged which permits to craft languages, grant-
ing to programming languages an unpreceded possibility of evolving. According to
Vygotsky we believe that ”the relation between thought and word is a living pro-
cess” [Vygotsky, 1986, p. 255], and we could iteratively revise our thoughts, as we
revise the way we express them and the tools we use for the task (hence languages).
Technology is providing us this ability, we have to plan how to use it in the decades
to come.

In this thesis we started by studying how to foster the adoption of existing
techniques for the development of single languages and later we studied how to
combine those languages.

The theme of cross-language relations is still very new. Our main contribution
is not to provide definitive answers but to help understand the phenomenon in
its full complexity. At the same time we try also to envision solutions, which are
significantly different from the ones proposed by other researchers. In particular we
underline the necessity to work on general solutions for combining languages. We
believe that, as the language tooling progresses, we will have more languages to be
combined in the same projects. Solutions which are based on manual implementation

186

9.4 – Final remarks

of support for a specific interactions risk to be not manageable.
We believe into the importance of having general solutions for language inte-

gration in the long run. Current approaches require too much specific effort to
provide tool support and they are brittle, requiring continuous maintenance to sup-
port the different combinations of evolving frameworks. We envision a future in
which practitioners are free to adopt and shape the pout-pourri of languages they
use to develop software. To support that freedom we need solutions able to adapt
to new combinations of languages, as they are created.

187

Bibliography

[Acerbis et al., 2007] Acerbis, R., Bongio, A., Brambilla, M., and Butti, S. (2007).
WebRatio 5: An Eclipse-Based CASE Tool for Engineering Web Applications. In
Baresi, L., Fraternali, P., and Houben, G.-J., editors, Web Engineering, volume
4607 of Lecture Notes in Computer Science, pages 501–505. Springer Berlin /
Heidelberg.

[Agresti, 2007] Agresti, A. (2007). An Introduction to Categorical Data Analysis.
Wiley-Interscience.

[Akinnaso, 1982] Akinnaso, F. N. (1982). On The Differences Between Spoken and
Written Language.

[Andrews and Schneider, 1983] Andrews, G. R. and Schneider, F. B. (1983). Con-
cepts and Notations for Concurrent Programming. ACM Comput. Surv., 15(1):3–
43.

[Bahli and Rivard, 2005] Bahli, B. and Rivard, S. (2005). Validating measures of
information technology outsourcing risk factors. Omega, 33(2):175–187.

[Baker et al., 2005] Baker, P., Loh, S., and Weil, F. (2005). Model-driven engineer-
ing in a large industrial context - motorola case study. In MoDELS ’05, pages
476–491. Springer-Verlag.

[Balasubramanian et al., 2006] Balasubramanian, K., Gokhale, A., Karsai, G., Szti-
panovits, J., and Neema, S. (2006). Developing applications using model-driven
design environments. Computer, 39(2):33–40.

[Barbosa and Alves,] Barbosa, O. and Alves, C. A Systematic Mapping Study on
Software Ecosystems. In Proceedings of the Workshop on Software Ecosystems
2011, pages 15–26.

[Barja et al., 1994] Barja, M. L., Paton, N. W., Fernandes, A. A. A., Williams,
M. H., and Dinn, A. (1994). An Effective Deductive Object-Oriented Database
Through Language Integration. In Proceedings of the 20th International Confer-
ence on Very Large Data Bases, VLDB ’94, pages 463–474, San Francisco, CA,
USA. Morgan Kaufmann Publishers Inc.

[Baroth and Hartsough, 1995] Baroth, E. and Hartsough, C. (1995). Visual object-
oriented programming. chapter Visual programming in the real world, pages
21–42. Manning Publications Co., Greenwich, CT, USA.

189

Bibliography

[Bolchini et al., 2008] Bolchini, D., Garzotto, F., and Paolini, P. (2008). Investi-
gating success factors for hypermedia development tools. In Proceedings of the
nineteenth ACM conference on Hypertext and hypermedia, HT ’08, pages 187–192,
New York, NY, USA. ACM.

[Booch, 1991] Booch, G. (1991). Object Oriented Design With Applications.
Addison-Wesley.

[Bosch, 2009] Bosch, J. (2009). From software product lines to software ecosystems.
In Proceedings of the 13th International Software Product Line Conference, SPLC
’09, pages 111–119, Pittsburgh, PA, USA. Carnegie Mellon University.

[Bosch and Bosch-Sijtsema, 2010a] Bosch, J. and Bosch-Sijtsema, P. (2010a). Co-
ordination Between Global Agile Teams: From Process to Architecture. In v
Smite, D., Moe, N. B., and AAgerfalk, P. J., editors, Agility Across Time and
Space, pages 217–233. Springer Berlin Heidelberg.

[Bosch and Bosch-Sijtsema, 2010b] Bosch, J. and Bosch-Sijtsema, P. (2010b). From
integration to composition: On the impact of software product lines, global de-
velopment and ecosystems. Journal of Systems and Software, 83(1):67–76.

[Budgen et al., 2011] Budgen, D., Burn, A. J., Brereton, O. P., Kitchenham, B. A.,
and Pretorius, R. (2011). Empirical evidence about the UML: a systematic liter-
ature review. Softw. Pract. Exper., 41(4):363–392.

[Budinsky et al., 2003] Budinsky, F., Brodsky, S. A., and Merks, E. (2003). Eclipse
Modeling Framework. Pearson Education.

[Carver et al., 2011] Carver, J. C., Syriani, E., and Gray, J. (2011). Assessing the
Frequency of Empirical Evaluation in Software Modeling Research. In Chaudron,
M., Genero, M., Abrahão, S., Mohagheghi, P., and Pareto, L., editors, Proceed-
ings of the First Workshop on Experiences and Empirical Studies in Software
Modelling, volume 785 of CEUR Workshop Proceedings, pages 20–29.

[Catal, 2009] Catal, C. (2009). Barriers to the adoption of software product line
engineering. SIGSOFT Softw. Eng. Notes, 34(6):1–4.

[Ceri et al., 2000] Ceri, S., Fraternali, P., and Bongio, A. (2000). Web modeling
language (WebML): a modeling language for designing web sites. Computer Net-
works, 33(1-6):137–157. Elsevier North-Holland, Inc., New York, NY, USA.

[Clark and Chalmers, 1998] Clark, A. and Chalmers, D. J. (1998). The Extended
Mind. Analysis, 58(1):7–19.

[Clark et al., 2004] Clark, T., Evans, A., Sammut, P., and Willans, J. (2004). Ap-
plied Metamodelling: A Foundation for Language Driven Development (First Edi-
tion).

[Coplien, 1998] Coplien, J. O. (1998). A Generative Development Process Pattern
Language. Cambridge University Press, New York.

[Cuadrado et al., 2013] Cuadrado, J. S., Izquierdo, J. L., and Molina, J. G. (2013).
Applying model-driven engineering in small software enterprises. Science of Com-
puter Programming, (0).

190

Bibliography

[Dahlbom, 1996] Dahlbom, B. (1996). The new informatics. Scandinavian Journal
of Information Systems, 8(2):29–48.

[Dann et al., 2008] Dann, W. P., Cooper, S., and Pausch, R. (2008). Learning To
Program with Alice. Prentice Hall Press, Upper Saddle River, NJ, USA, 2 edition.

[Darwin, 1871] Darwin, C. (1871). The descent of man, and se-
lection in relation to sex, volume 1. London,J. Murray,.
http://www.biodiversitylibrary.org/bibliography/2092.

[Davies et al., 2006] Davies, I., Green, P., Rosemann, M., Indulska, M., and Gallo,
S. (2006). How do practitioners use conceptual modeling in practice? Data &
Knowledge Engineering, 58(3):358–380. Elsevier Science Publishers B. V., Ams-
terdam, The Netherlands.

[Day, 1988] Day, R. S. (1988). Alternative representations, pages 261–305. Aca-
demic Press.

[Dennett, 1996] Dennett, D. (1996). Kinds of Minds. BasicBooks, New York.
[Dennett, 2000] Dennett, D. C. (2000). Making Tools for Thinking. Oxford Univer-

sity Press.
[Dijkstra, 1972] Dijkstra, E. W. (1972). The humble programmer. Commun. ACM,

15(10):859–866.
[Dmitriev, 2004] Dmitriev, S. (2004). Language Oriented Programming: The Next

Programming Paradigm. onBoard.
[Egorova et al., 2010] Egorova, E., Torchiano, M., and Morisio, M. (2010). Actual

vs. perceived effect of software engineering practices in the Italian industry. Jour-
nal of Systems and Software, 83(10):1907–1916. Elsevier Science Inc., New York,
NY, USA.

[Eysholdt and Behrens, 2010] Eysholdt, M. and Behrens, H. (2010). Xtext: imple-
ment your language faster than the quick and dirty way. In Proceedings of the
ACM international conference companion on Object oriented programming sys-
tems languages and applications companion, SPLASH ’10, pages 307–309, New
York, NY, USA. ACM.

[Felleisen, 1990] Felleisen, M. (1990). On the Expressive Power of Programming
Languages. In Science of Computer Programming, pages 134–151. Springer-
Verlag.

[Fleurey et al., 2007] Fleurey, F., Breton, E., Baudry, B., Nicolas, A., and Jezequel,
J. (2007). Model-Driven Engineering for Software Migration in a Large Industrial
Context. In MoDELS ’07, pages 482–497. Springer-Verlag.

[Forward et al., 2010] Forward, A., Badreddin, O., and Lethbridge, T. C. (2010).
Perceptions of Software Modeling: A Survey of Software Practitioners. In 5th
Workshop from Code Centric to Model Centric: Evaluating the Effectiveness of
MDD, pages 12–24.

[Foustok, 2007] Foustok, M. (2007). Experiences in Large-Scale, Component Based,
Model-Driven Software Development. In Systems Conf., 2007 IEEE, pages 1–8.

191

Bibliography

[Fowler and Parsons, 2011] Fowler, M. and Parsons, R. (2011). Domain-Specific
Languages. Addison-Wesley.

[France and Rumpe, 2003] France, R. and Rumpe, B. (2003). Model engineering.
Journal Software and Systems Modeling, 2(2):73–75. Springer-Verlag Heidelberg,
Heidelberg, Germany.

[Gadamer, 1976] Gadamer, H.-G. (1976). The Historicity of Understanding, pages
117–133. Penguin Books Ltd.

[Gall et al., 1998] Gall, H., Hajek, K., and Jazayeri, M. (1998). Detection of log-
ical coupling based on product release history. In Software Maintenance, 1998.
Proceedings., International Conference on, pages 190–198.

[Gamma et al., 1994] Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (1994).
Design Patterns: Elements of Reusable Object-Oriented Software. Addison-
Wesley Professional, 1 edition.

[Gilb and Brodie, 2005] Gilb, T. and Brodie, L. (2005). Chapter 10 - Evolutionary
Project Management: How to Manage Project Benefits and Costs. In Competitive
Engineering, pages 291–319. Butterworth-Heinemann, Oxford.

[Graham, 2001] Graham, P. (2001). Beating the averages.
[Graham, 2002] Graham, P. (2002). Revenge of the nerds.
[Green, 1989] Green, T. R. G. (1989). Cognitive dimensions of notations. In Sut-

cliffe, A. and Macaulay, L., editors, People and Computers V, pages 443–460.
Cambridge University Press, Cambridge, UK.

[Groenewegen and Visser, 2008] Groenewegen, D. and Visser, E. (2008). Declara-
tive Access Control for WebDSL: Combining Language Integration and Separa-
tion of Concerns. In Web Engineering, 2008. ICWE ’08. Eighth International
Conference on, pages 175–188.

[Gross, 2009] Gross, M. D. (2009). Visual languages and visual thinking: sketch
based interaction and modeling. In Proceedings of the 6th Eurographics Sympo-
sium on Sketch-Based Interfaces and Modeling, SBIM ’09, pages 7–11, New York,
NY, USA. ACM.

[Groves et al., 2009] Groves, R. M., Fowler, F. J., Couper, M. P., Lepkowski, J. M.,
Singer, E., and Tourangeau, R. (2009). Survey Methodology. John Wiley and
Sons.

[Gumperz and Levinson, 1996] Gumperz, J. J. and Levinson, S. C. (1996). Re-
thinking linguistic relativity. Number 17 in Studies in the Social and Cultural
Foundation. Cambridge University Press, Cambridge, England.

[Gurov et al., 2007] Gurov, V., Mazin, M., Narvsky, A., and Shalyto, A. (2007).
Tools for support of automata-based programming. Programming and Computer
Software, 33:343–355. MAIK Nauka/Interperiodica distributed exclusively by
Springer Science+Business Media LLC.

[Hanssen, 2012] Hanssen, G. K. (2012). A longitudinal case study of an emerging
software ecosystem: Implications for practice and theory. Journal of Systems and

192

Bibliography

Software, 85(7):1455–1466. ¡ce:title¿Software Ecosystems¡/ce:title¿.

[Harrison et al., 1997] Harrison, D. A., Mykytyn, P. P., and Riemenschneider, C. K.
(1997). Executive decisions about adoption of information technology in small
business: theory and empirical tests. Information Systems Research, 8(2):171–
195.

[Hauge, 2007] Hauge, O. (2007). Open Source Software in Software Inten-
sive Industry - A Survey. Technical report, Norwegian University of Sci-
ence and Technology Department of Computer and Information Science.
http://daim.idi.ntnu.no/masteroppgaver/IME/

IDI/2007/3290/masteroppgave.pdf.

[Heijstek and Chaudron, 2009] Heijstek, W. and Chaudron, M. R. V. (2009). Em-
pirical Investigations of Model Size, Complexity and Effort in a Large Scale, Dis-
tributed Model Driven Development Process. In Proceedings of the 2009 35th Eu-
romicro Conference on Software Engineering and Advanced Applications, SEAA
’09, pages 113–120. IEEE Computer Society, Washington, DC, USA.

[Hen-Tov et al., 2009] Hen-Tov, A., Lorenz, D. H., Pinhasi, A., and Schachter, L.
(2009). ModelTalk: When Everything Is a Domain-Specific Language. Software,
IEEE, 26(4):39–46.

[Hermans et al., 2009] Hermans, F., Pinzger, M., and van Deursen, A. (2009).
Domain-Specific Languages in Practice: A User Study on the Success Factors.
In MoDELS, pages 423–437.

[Hidders et al., 2005] Hidders, J., Marrara, S., Paredaens, J., and Vercammen, R.
(2005). On the expressive power of XQuery fragments. In Database Programming
Languages, pages 154–168. Springer Berlin Heidelberg.

[Hjørland and Sejer Christensen, 2002] Hjørland, B. and Sejer Christensen, F.
(2002). Work tasks and socio-cognitive relevance: a specific example. Journal
of the American Society for Information Science and Technology, 53:960–965.

[Humm and Engelschall, 2010] Humm, B. G. and Engelschall, R. S. (2010).
Language-Oriented programming via DSL stacking. ICSOFT ’10.

[Hutchinson et al., 2011a] Hutchinson, J., Rouncefield, M., and Whittle, J. (2011a).
Model-driven engineering practices in industry. In Proceedings of the 33rd Inter-
national Conference on Software Engineering, ICSE ’11, pages 633–642. ACM,
New York, NY, USA.

[Hutchinson et al., 2011b] Hutchinson, J., Whittle, J., Rouncefield, M., and Kristof-
fersen, S. (2011b). Empirical assessment of MDE in industry. In Proceedings of
the 33rd International Conference on Software engineering, ICSE ’11, pages 471–
480. ACM, New York, NY, USA.

[Hutchinson, 2011] Hutchinson, J. E. (2011). An Empirical Assessment of Model
Driven Development in Industry. PhD thesis, Lancaster University.

193

Bibliography

[Ifpug, 2012] Ifpug, editor (2012). The IFPUG Guide to IT and Software Measure-
ment. CRC Press.

[Iverson, 1980] Iverson, K. E. (1980). Notation as a tool of thought. Commun.
ACM, 23:444–465.

[Jacobson et al., 1999] Jacobson, I., Booch, G., and Rumbaugh, J. (1999). The
Unified Modeling Language Reference Manual. Addison-Wesley.

[Jansen et al., 2009] Jansen, S., Finkelstein, A., and Brinkkemper, S. (2009). A
sense of community: A research agenda for software ecosystems. In Software En-
gineering - Companion Volume, 2009. ICSE-Companion 2009. 31st International
Conference on, pages 187–190.

[Jaspars et al., 1983] Jaspars, J. M. F., Fincham, F. D., and Hewstone, M. (1983).
Attribution Theory and Research: Conceptual, Developmental, and Social Dimen-
sions. European Monographs in Social Psychology. Academic Press.

[Jelitshka et al., 2007] Jelitshka, A., Ciolkowski, M., Denger, C., Freimut, B., and
Schlichting, A. (2007). Relevant Information Sources for Successful Technology
Transfer: a Survey using Inspections as an Example. In Proceedings of the
International Symposium on Empirical Software Engineering and Measurement
(ESEM), pages 31–40. IEEE.

[Jiang and Hu, 2008] Jiang, D. and Hu, J. (2008). Research of Model-Based Code
Automatic Generation of Management Systems. In Wireless Communications,
Networking and Mobile Computing, 2008. WiCOM ’08. 4th International Confer-
ence on, pages 1–4.

[Kasurinen et al., 2013] Kasurinen, J., Strandén, J.-P., and Smolander, K. (2013).
What do game developers expect from development and design tools? In Pro-
ceedings of the 17th International Conference on Evaluation and Assessment in
Software Engineering, EASE ’13, pages 36–41, New York, NY, USA. ACM.

[Kats and Visser, 2010] Kats, L. C. L. and Visser, E. (2010). The Spoofax lan-
guage workbench. In Proceedings of the ACM international conference companion
on Object oriented programming systems languages and applications companion,
SPLASH ’10, pages 237–238, New York, NY, USA. ACM.

[Kelly and Tolvanen, 2008] Kelly, S. and Tolvanen, J.-P. (2008). Domain-specific
modeling: enabling full code generation. Wiley. com.

[Kilamo et al., 2012] Kilamo, T., Hammouda, I., Mikkonen, T., and Aaltonen, T.
(2012). From proprietary to open source—Growing an open source ecosystem.
Journal of Systems and Software, 85(7):1467–1478.

[Kitchenham and Charters, 2007] Kitchenham, B. and Charters, S. (2007). Guide-
lines for performing Systematic Literature Reviews in Software Engineering.

[Kitchenham and Pfleeger, 2008] Kitchenham, B. and Pfleeger, S. L. (2008). Per-
sonal Opinion Surveys. In Shull, F. and Singer, editors, Guide to Advanced Em-
pirical Software Engineering, pages 63–92. Springer London.

194

Bibliography

[Klein and Myers, 1999] Klein, H. K. and Myers, M. D. (1999). A Set of Principles
for Conducting and Evaluating Interpretiv Filed Studies in Information Systems.
MIS Quarterly, 23(1):67–94.

[Kleppe et al., 2003] Kleppe, A. G., Warmer, J., and Al, E. (2003). MDA Explained:
The Model Driven Architecture: Practice and Promise. Addison-Wesley Longman
Publishing Co., Inc.

[Knuth, 1984] Knuth, D. E. (1984). Literate programming. The Computer Journal,
27:97–111.

[Kolovos et al., 2006] Kolovos, D. S., Paige, R. F., and Polack, F. A. C. (2006). The
epsilon object language (EOL). In Proceedings of the Second European conference
on Model Driven Architecture: foundations and Applications, ECMDA-FA’06,
pages 128–142, Berlin, Heidelberg. Springer-Verlag.

[Leotta et al., 2012] Leotta, M., Ricca, F., Ribaudo, M., Reggio, G., Astesiano, E.,
and Vernazza, T. (2012). An Exploratory Survey on SOA Knowledge, Adoption
and Trend in the Italian Industry. In Proceedings of 14th International Symposium
on Web Systems Evolution (WSE 2012), pages 21–30. IEEE.

[Lethbridge, 1998] Lethbridge, T. C. (1998). A Survey of the Relevance of Com-
puter Science and Software Engineering Education. In Proceedings of the 11th
Conference on Software Engineering Education and Training, pages 56–66. IEEE
Computer Society, Washington, DC, USA.

[Leveque et al., 2009] Leveque, T., Estublier, J., and Vega, G. (2009). Extensibility
and Modularity for Model Driven Engineering Environments. In ECBS ’09, pages
305–314. IEEE Computer Society.

[Li et al., 2008] Li, J., Conradi, R., Petter, O., Slyngstad, N., Torchiano, M., Mori-
sio, M., and Bunse, C. (2008). A State-of-the-Practice Survey on Risk Manage-
ment in Development with Off-The-Shelf Software Components. IEEE Software,
34(2):271–286.

[Libkin, 2001] Libkin, L. (2001). Expressive Power of SQL.

[Logan, 2007] Logan, R. K. (2007). The Extended Mind: The Emergence of Lan-
guage, the Human Mind and Culture. University of Toronto Press.

[Lungu et al., 2010] Lungu, M., Lanza, M., Girba, T., and Robbes, R. (2010). The
Small Project Observatory: Visualizing software ecosystems. Science of Computer
Programming, 75(4):264–275.

[MacDonald et al., 2005] MacDonald, A., Russell, D., and Atchison, B. (2005).
Model-driven development within a legacy system: an industry experience re-
port. In Software Engineering Conference, 2005. Proceedings. 2005 Australian,
pages 14–22.

[Maloney et al., 2010] Maloney, J., Resnick, M., Rusk, N., Silverman, B., and East-
mond, E. (2010). The Scratch Programming Language and Environment. Trans.
Comput. Educ., 10(4).

195

Bibliography

[Manikas and Hansen, 2013] Manikas, K. and Hansen, K. M. (2013). Software
ecosystems – A systematic literature review. Journal of Systems and Software,
86(5):1294–1306.

[Mattsson, 2008] Mattsson, A. (2008). Automatic architectural enforcement. In
Bermejo, J., Lundell, B., and van der Linden, F., editors, Combining the Ad-
vantages of Product Lines and Open Source, number 08142 in Dagstuhl Seminar
Proceedings, pages 1–9, Dagstuhl, Germany. Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik, Germany.

[Mattsson, 2010] Mattsson, A. (2010). Automatic Enforcement of Architectural
Design Rules. In Proceedings of the 32Nd ACM/IEEE International Conference
on Software Engineering - Volume 2, ICSE ’10, pages 369–372, New York, NY,
USA. ACM.

[Mayer and Schroeder, 2012] Mayer, P. and Schroeder, A. (2012). Cross-Language
Code Analysis and Refactoring. In Source Code Analysis and Manipulation
(SCAM), 2012 IEEE 12th International Working Conference on, pages 94–103.

[Mayer and Schroeder, 2013] Mayer, P. and Schroeder, A. (2013). Patterns of cross-
language linking in java frameworks. In 21st International Conference on Program
Comprehension (ICPC’13).

[Mellor and Balcer, 2002] Mellor, S. and Balcer, M. (2002). Executable UML: A
foundation for model-driven architecture. Addison-Wesley.

[Mellor et al., 2003] Mellor, S. J., Clark, A. N., and Futagami, T. (2003). Model-
driven development - Guest editor’s introduction. Software, IEEE, 20(5):14–18.

[Mens et al., 2005] Mens, T., Wermelinger, M., Ducasse, S., Demeyer, S.,
Hirschfeld, R., and Jazayeri, M. (2005). Challenges in software evolution. In
Principles of Software Evolution, Eighth International Workshop on, pages 13–
22.

[Merkle, 2010] Merkle, B. (2010). Textual modeling tools: overview and comparison
of language workbenches. In Proceedings of the ACM international conference
companion on Object oriented programming systems languages and applications
companion, SPLASH ’10, pages 139–148, New York, NY, USA. ACM.

[Mitchell, 1993] Mitchell, J. C. (1993). On abstraction and the expressive power of
programming languages. Science of Computer Programming, 21(2):141–163.

[Mohagheghi and Dehlen, 2010] Mohagheghi, P. and Dehlen, V. (2010). Where is
the proof? - a review of experiences from applying MDE in industry. In Model
Driven Architecture Foundations and Applications, volume 5095 of Lecture Notes
in Computer Science, pages 432–443. Springer Berlin / Heidelberg.

[Mohagheghi et al., 2009] Mohagheghi, P., Fernandez, M. A., Martell, J. A.,
Fritzsche, M., and Gilani, W. (2009). MDE adoption in industry : Challenges
and success criteria. Models in Software Engineering, pages 54–59.

[Mohagheghi et al., 2012] Mohagheghi, P., Gilani, W., Stefanescu, A., and Fernan-
dez, M. (2012). An empirical study of the state of the practice and acceptance of

196

Bibliography

model-driven engineering in four industrial cases. Empirical Software Engineer-
ing, pages 1–28.

[Motulsky, 2010] Motulsky, H. (2010). Intuitive biostatistics: a nonmathematical
guide to statistical thinking. Oxford University Press.

[Navarro, 2001] Navarro, G. (2001). A Guided Tour to Approximate String Match-
ing. ACM Computing Survey, 33(1):31–88.

[Navarro-Prieto and Cañas, 2001] Navarro-Prieto, R. and Cañas, J. J. (2001). Are
visual programming languages better? The role of imagery in program compre-
hension. Int. J. Hum.-Comput. Stud., 54(6):799–829.

[Neary and Woodward, 2002] Neary, D. S. and Woodward, M. R. (2002). An Ex-
periment to Compare the Comprehensibility of Textual and Visual Forms of Al-
gebraic Specifications. J. Vis. Lang. Comput., 13(2):149–175.

[Nersessian, 2009] Nersessian, N. J. (2009). How Do Engineering Scientists Think?
Model-Based Simulation in Biomedical Engineering Research Laboratories. Top-
ics in Cognitive Science, 1.

[Nie and Zhang, 2011] Nie, K. and Zhang, L. (2011). On the Relationship between
Preprocessor-Based Software Variability and Software Defects. In High-Assurance
Systems Engineering (HASE), 13th Int. Symp. on, pages 178–179.

[Nugroho and Chaudron, 2008] Nugroho, A. and Chaudron, M. R. V. (2008). A
survey into the rigor of UML use and its perceived impact on quality and produc-
tivity. In Proceedings of the ACM-IEEE international symposium on Empirical
software engineering and measurement, ESEM ’08, pages 90–99. ACM, New York,
NY, USA.

[Object Management Group, 2011a] Object Management Group (2011a). Business
Process Model and Notation, v. 2.0. Standard, Object Management Group.

[Object Management Group, 2011b] Object Management Group (2011b). Unified
Modeling Language, Superstructure, v. 2.4. Specifications, Object Management
Group.

[Oppenheim, 1992] Oppenheim, A. N. (1992). Questionnaire Design, Interviewing
and Attitude Measurement. Pinter, London.

[Pane and Myers, 2000] Pane, J. F. and Myers, B. A. (2000). Improving user per-
formance on Boolean queries. In CHI ’00 Extended Abstracts on Human Factors
in Computing Systems, CHI EA ’00, pages 269–270, New York, NY, USA. ACM.

[Park, 2004] Park, K. M. (2004). Factors Contributing to Korean Students’ High
Achievement in Mathematics. ICME ’10.

[Pfeiffer and Wasowski, 2012a] Pfeiffer, R.-H. and Wasowski, A. (2012a). Cross-
Language Support Mechanisms Significantly Aid Software Development. In Model
Driven Engineering Languages and Systems, volume 7590 of Lecture Notes in
Computer Science, pages 168–184. Springer Berlin Heidelberg.

[Pfeiffer and Wasowski, 2012b] Pfeiffer, R.-H. and Wasowski, A. (2012b). TexMo:
a multi-language development environment. In Proc. of the 8th European Conf.

197

Bibliography

on Modelling Foundations and Applications, ECMFA’12, pages 178–193, Berlin,
Heidelberg. Springer-Verlag.

[Pfeiffer and Wasowski, 2013] Pfeiffer, R.-H. and Wasowski, A. (2013). Tengi Inter-
faces for Tracing between Heterogeneous Components. In Lammel, R., Saraiva,
J., and Visser, J., editors, Generative and Transformational Techniques in Soft-
ware Engineering IV, volume 7680 of Lecture Notes in Computer Science, pages
431–447. Springer Berlin Heidelberg.

[Punter et al., 2003] Punter, T., Ciolkowski, M., Freimut, B., and John, I. (2003).
Conducting on-line surveys in software engineering. In Proceedings of the Inter-
national Symposium on Empirical Software Engineering, (ISESE), pages 80–88.

[Pütz and Verspoor, 2000] Pütz, M. and Verspoor, M. H. (2000). Explorations in
linguistic relativity. John Benjamins Publishing Co.

[Ratzinger et al., 2005] Ratzinger, J., Fischer, M., and Gall, H. (2005). Improving
evolvability through refactoring. In Proceedings of the 2005 international work-
shop on Mining software repositories, MSR ’05, pages 1–5, New York, NY, USA.
ACM.

[Ratzinger et al., 2007] Ratzinger, J., Sigmund, T., Vorburger, P., and Gall, H.
(2007). Mining Software Evolution to Predict Refactoring. In Empirical Software
Engineering and Measurement, 2007. ESEM 2007. First International Symposium
on, pages 354–363.

[Richardson and von Wangenheim, 2007] Richardson, I. and von Wangenheim,
C. G. (2007). Guest Editors’ Introduction: Why are Small Software Organi-
zations Different? IEEE Software, 24(1):18–22.

[Rogers, 2003] Rogers, E. M. (2003). Diffusion of Innovations. Simon and Schuster,
5th edition edition.

[Runeson and Höst, 2009] Runeson, P. and Höst, M. (2009). Guidelines for con-
ducting and reporting case study research in software engineering. Empirical
Software Engineering, 14(2):131–164.

[Sapir, 1929] Sapir, E. (1929). The status of linguistics as a science. Language,
5(209).

[Schmidt, 2006] Schmidt, D. C. (2006). Guest Editor’s Introduction: Model-Driven
Engineering. Computer, 39:25–31.

[Seaman, 1999] Seaman, C. (1999). Qualitative methods in empirical studies of
software engineering. IEEE Transactions on Software Engineering, 22(4):557–
572.

[Seehusen and Stølen, 2011] Seehusen, F. and Stølen, K. (2011). An Evaluation of
the Graphical Modeling Framework (GMF) Based on the Development of the
CORAS Tool. In Cabot, J. and Visser, E., editors, Theory and Practice of Model
Transformations, volume 6707 of Lecture Notes in Computer Science, pages 152–
166. Springer Berlin Heidelberg.

198

Bibliography

[Selic, 2003] Selic, B. (2003). The pragmatics of model-driven development. IEEE
Software, 20(5):19–25.

[Selic et al., 1994] Selic, B., Gullekson, G., and Ward, P. T. (1994). Real-Time
Object-Oriented Modeling. John Wiley & Sons.

[Shirtz et al., 2007] Shirtz, D., Kazakov, M., and Shaham-Gafni, Y. (2007). Adopt-
ing Model Driven Development in a Large Financial Organization. In Model
Driven Architecture- Foundations and Applications, volume 4530 of Lecture Notes
in Computer Science, pages 172–183. Springer.

[Simonyi et al., 2006] Simonyi, C., Christerson, M., and Clifford, S. (2006). Inten-
tional software. In OOPSLA, pages 451–464.

[Singer et al., 2008] Singer, J., Storey, M. A., and Damian, D. (2008). Selecting Em-
pirical Methods for Software Engineering Research. In Shull, F. and Singer, edi-
tors, Guide to Advanced Empirical Software Engineering, pages 285–311. Springer.

[Singh et al., 2002] Singh, I., Stearns, B., and Johnson, M. (2002). Designing En-
terprise Applications with the J2EE(TM) Platform (2nd Edition). Prentice Hall.

[Staron, 2006] Staron, M. (2006). Adopting Model Driven Software Development
in Industry A Case Study at Two Companies. In Model Driven Engineering
Languages and Systems, volume 4199 of Lecture Notes in Computer Science, pages
57–72. Springer.

[Sutcliffe et al., 1999] Sutcliffe, A., Galliers, J., and Minocha, S. (1999). Human
Errors and System Requirements. Requirements Engineering, IEEE International
Conference on, page 23.

[Swartbooi, 2010] Swartbooi, A. A. (2010). The role of knowledge management in
offshore outsourced software development. PhD thesis, University of Stellenbosch,
Department of Information Science.

[Tolvanen and Kelly, 2010] Tolvanen, J.-P. and Kelly, S. (2010). Integrating models
with domain-specific modeling languages. In Proceedings of the 10th Workshop
on Domain-Specific Modeling, DSM ’10, New York, NY, USA. ACM.

[Tomassetti et al., 2014] Tomassetti, F., Rizzo, G., and Torchiano, M. (2014). Spot-
ting Automatically Cross-Language. In Prooceedings of the IEEE CSMR-WCRE
2014.

[Tomassetti et al., 2013a] Tomassetti, F., Torchiano, M., and Bazzani, L. (2013a).
MDD Adoption in a Small Company: Risk Management and Stakeholders’ Ac-
ceptance. Journal of Universal Computer Science, 19(2):186–206.

[Tomassetti et al., 2012] Tomassetti, F., Torchiano, M., Tiso, A., Ricca, F., and
Reggio, G. (2012). Maturity of software modelling and model driven engineering:
A survey in the Italian industry. In Evaluation Assessment in Software Engineer-
ing (EASE 2012), 16th International Conference on, pages 91–100.

[Tomassetti et al., 2013b] Tomassetti, F., Torchiano, M., and Vetro’, A. (2013b).
Classification of Language Interactions. In 7th International Symposium on Em-
pirical Software Engineering and Measurement (ESEM’13).

199

Bibliography

[Tomassetti et al., 2013c] Tomassetti, F., Vetro’, A., Torchiano, M., Völter, M., and
Kolb, B. (2013c). A Model-Based Approach to Language Integration. In Modeling
in Software Engineering (MISE), 2013 ICSE Workshop on.

[Torchiano et al., 2011a] Torchiano, M., Di Penta, M., Ricca, F., De Lucia, A., and
Lanubile, F. (2011a). Migration of information systems in the Italian industry:
A state of the practice survey. Information and Software Technology, 53:71–86.

[Torchiano and Ricca, 2013] Torchiano, M. and Ricca, F. (2013). Six reasons for
rejecting an industrial survey paper. In Conducting Empirical Studies in Industry
(CESI), 2013 1st International Workshop on, pages 21–26.

[Torchiano et al., 2011b] Torchiano, M., Tomassetti, F., Ricca, F., Tiso, A., and
Reggio, G. (2011b). Preliminary findings from a survey on the MD* state of
the practice. In International Symposium on Empirical Software Engineering and
Measurement (ESEM), pages 372–375. IEEE.

[Torchiano et al., 2012] Torchiano, M., Tomassetti, F., Ricca, F., Tiso, A., and Reg-
gio, G. (2012). Benefits from modelling and MDD adoption: expectations and
achievements. In Proceedings of the Second Edition of the International Workshop
on Experiences and Empirical Studies in Software Modelling, EESSMod ’12, New
York, NY, USA. ACM.

[Torchiano et al., 2013] Torchiano, M., Tomassetti, F., Ricca, F., Tiso, A., and Reg-
gio, G. (2013). Relevance, benefits, and problems of software modelling and model
driven techniques - A survey in the Italian industry. Journal of Systems and Soft-
ware, (0).

[van Angeren et al., 2011] van Angeren, J., Blijleven, V., and Jansen, S. (2011). Re-
lationship intimacy in software ecosystems: a survey of the Dutch software indus-
try. In Proceedings of the International Conference on Management of Emergent
Digital EcoSystems, MEDES ’11, pages 68–75, New York, NY, USA. ACM.

[van Deursen et al., 2007] van Deursen, A., Visser, E., and Warmer, J. (2007).
Model-Driven Software Evolution: A Research Agenda. Technical report,
TUDelft-SERG.

[Vetro’ et al., 2011] Vetro’, A., Morisio, M., and Torchiano, M. (2011). An empirical
validation of FindBugs issues related to defects. In Evaluation Assessment in
Software Engineering (EASE 2011), 15th Annual Conference on, pages 144–153.

[Vetro’ et al., 2012] Vetro’, A., Tomassetti, F., Torchiano, M., and Morisio, M.
(2012). Language interaction and quality issues: an exploratory study. In Pro-
ceedings of the ACM-IEEE international symposium on Empirical software en-
gineering and measurement, ESEM ’12, pages 319–322, New York, NY, USA.
ACM.

[Vetro’ et al., 2010] Vetro’, A., Torchiano, M., and Morisio, M. (2010). Assessing
the precision of FindBugs by mining Java projects developed at a university. In
Mining Software Repositories (MSR), 2010 7th IEEE Working Conference on,
pages 110–113.

200

Bibliography

[Vetro’ et al., 2013] Vetro’, A., Zazworka, N., Shull, F., Seaman, C., and Shaw,
M. (2013). Investigating Automatic Static Analysis Results to Identify Quality
Problems: an Inductive Study. In Software Engineering Workshop (SEW), 2012
35th Annual IEEE, pages 21–31.

[Völter, 2009] Völter, M. (2009). Best Practices for DSLs and Model-Driven Devel-
opment. Journal of Object Technology, 8(6):79–102.

[Völter, 2011a] Völter, M. (2011a). From programming to modeling-and back again.
Software, IEEE, 28(6):20–25.

[Völter, 2011b] Völter, M. (2011b). Language and IDE Development, Modulariza-
tion and Composition with MPS. In Generative and Transformational Techniques
in Software Engineering II, International Summer School, GTTSE 2011, LNCS.
Springer.

[Völter, 2013] Völter, M. (2013). Language and IDE Modularization and Composi-
tion with MPS. In Lämmel, R., Saraiva, J. a., and Visser, J., editors, Generative
and Transformational Techniques in Software Engineering IV, volume 7680 of
Lecture Notes in Computer Science, pages 383–430. Springer Berlin Heidelberg.

[Völter and Visser, 2010] Völter, M. and Visser, E. (2010). Language extension and
composition with language workbenches. In Proceedings of the ACM international
conference companion on Object oriented programming systems languages and ap-
plications companion, pages 301–304. ACM.

[Vygotsky, 1986] Vygotsky, L. S. (1986). Thought and Language - Revised Edition.
The MIT Press, revised edition.

[Walonick, 1997] Walonick, D. S. (1997). Survival Statistics. StatPac, Inc.
[Walsham, 1993] Walsham, G. (1993). Interpreting Information Systems in Orga-

nizations. Wiley, Chichester, UK.
[Wampler et al., 2010] Wampler, D., Clark, T., Ford, N., and Goetz, B. (2010).

Multiparadigm Programming in Industry: A Discussion with Neal Ford and Brian
Goetz. IEEE Software, 27(5):61–64.

[Ward, 1994] Ward, M. P. (1994). Language-Oriented Programming. Software -
Concepts and Tools, 15(4):147–161.

[Wexelblat, 1981] Wexelblat, R. L., editor (1981). History of programming lan-
guages I. ACM, New York, NY, USA.

[Whitehead, 1911] Whitehead, A. N. (1911). An introduction to Mathematics.
Williams & Northgate.

[Whitley, 1997] Whitley, K. N. (1997). Visual Programming Languages and the
Empirical Evidence For and Against. Journal of Visual Languages & Computing,
8(1):109–142.

[Whorf, 1940] Whorf, B. (1940). Science and linguistics. Review, Technology, 42(6).
[Wohlin et al., 2000] Wohlin, C., Runeson, P., Höst, M., Ohlsson, M. C., Regnell,

B., and Wesslén, A. (2000). Experimentation in Software Engineering - An In-
troduction. Kluwer Academic Publishers.

201

Bibliography

[Yin, 2002] Yin, R. K. (2002). Case Study Research: Design and Methods, Third
Edition, Applied Social Research Methods Series, Vol 5. Sage Publications, Inc,
3rd edition.

[Zeng et al., 2005] Zeng, L., Lei, H., Dikun, M., Chang, H., Bhaskaran, K., and
Frank, J. (2005). Model-driven business performance management. In e-Business
Engineering, 2005. ICEBE 2005. IEEE International Conference on, pages 295–
304.

202

	Summary
	Acknowledgements
	Introduction
	External factors affecting our ability to think
	Languages
	Notations
	Tools

	External factors affecting our programming ability
	Languages
	Notations
	Tools

	Programming paradigms based on improved abstractions
	Libraries development and Metaprogramming
	Model-driven development
	Language Specific Engineering

	Research design
	Phase A: adoption of modeling and domain specific languages
	Phase B: combining multiple languages

	Relevance, benefits and problems of modeling and DSL adoption
	Introduction
	Study definition
	Research Questions
	Population and sampling strategy
	Survey Preparation and Execution
	Questionnaire Design
	Analysis methodology

	Findings about relevance of modelling and MD*
	The sample
	RQ1: relevance and diffusion
	RQ2: experience level

	Findings about how software modelling and MD* are applied
	RQ3: languages and notations
	RQ4: processes and tools
	RQ5: factors affecting maturity

	Findings about benefits and problems
	RQ6: benefits expectations
	RQ7: benefits achievement
	RQ8: problems

	Debriefing session
	Issue 1) Experience in MD* is very low
	Issue 2) The percentage of code that is generated is often low
	Issue 3) Micro-companies appear to be more mature in MD* than larger companies
	Question) What is needed to improve the maturity and foster the diffusion of MD* in Italy?

	Discussion
	Threats to validity
	Related work
	Literature reviews
	Surveys
	Case studies
	Experience reports

	Summary and future work

	Modeling adoption in a small company: the Trim case-study
	Introduction
	Case Study background
	Motivations for MDD
	Project constraints
	Perceived risks
	Scope of the solution

	Case Study solution
	Domain model
	The intermediate meta-model
	Generated artefacts
	Supporting tools

	Risks management
	Lessons learned
	Risk mitigation

	Acceptance assessment
	Questionnaire definition
	Discussion of responses
	Results evaluation
	Acceptance
	Process changes

	Related work
	Summary
	Appendix - Responses to open ended items

	Modeling adoption in large company: the CSI case-study
	Introduction
	Context
	Motivation
	Organization of the work

	Method
	History
	Before MDD Era
	Informal Era
	Assessment Era
	Investment Era
	Maturity Era
	Community era

	Motifs
	Incremental adoption
	Toolsmithing
	Integration
	Support
	Automatic enforcement
	Quality of the generated code
	RoI for external adopters
	Distributed platform development

	Discussion
	Related work
	Deployment of MDD and SPLs
	Software ecosystems

	Summary
	Modeling adoption: comparison between small and large companies

	Cross-language interactions: a classification
	Introduction
	Related work
	Method
	Categories
	Shared ID - Example
	Shared data - Example
	Data loading - Example
	Generation - Example
	Description - Example
	Execution - Example

	Classification
	Summary

	A preliminary empirical assessment on the effects of cross-language interactions
	Definitions
	Design
	Case study
	Results and discussion
	Threats to validity
	Summary

	Spotting automatically cross language interactions
	Introduction
	Related work
	Benchmark
	Method
	ASTs construction
	Context
	Features derivation
	Classification

	Experiment and results
	Discussion and outlook

	Language integration using language workbenches
	Introduction
	Prevalence of Language Interactions
	Problems Given by Language Interactions
	Anectodal Evidence
	Empirical Evidence: Side Effects of Languages Interaction

	Language Integration in Language Workbenches
	Language Components Classification
	Approach to integration

	Related Work
	Approaches Working on Family of Languages
	General Approaches

	Conclusions and Research Agenda

	Conclusions
	Answers to research questions
	Practical Implications
	Outlook
	Final remarks

	Bibliography

